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Abstract 

A Projection Method for Reacting Row in the 

Zero Mach Nwnber Limit 

by 

Mindy Fruchttnan Lai 

Doctor of Philosophy in Mechanical Engineering 

University of California., at Berkeley 

Professor Phillip Colella., Chair 

An efficient numerical technique is presented for solving the reduced system of equations for 

reacting flow in the zero Mach number limit. The technique is based on the projection method 

which had been developed to solve the Navier-Stokes equations for incompressible flow. modified 

to account for the non-zero divergence of the velocity. The technique is second-order accurate in 

both space and time. Calculations are presented for reacting flow in a closed container. 
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Introduction 

The goal of this thesis is to develop a numerical method for solving the system of equations of 

reacting flow in the limit of zero Mach number. The method presented. a modified projection 

method. is second-order accurate in both time and space. It is. funhennore, restricted only by an 

advective CR.... number and is. therefore. an efficient means of solving the reduced reacting flow 

equations. In the limit of zero Mach number. the time scale of the acoustics is much smaller than 

the advective time scale. and this fact is used to remove detailed acoustic wave effects from the 

system. Despite this simplification. the model correctly represents the effects of large temperature 

and density variations. substantial heat release, and baroclinic generation of vorticity. 

Projection methods are a class of finite difference methods introduced by Olann in 1968 to 

solve the Navier·Stokes equations for incompressible flow. TIle fractional step scheme he pro­

posed involves first advancing the advection-diffusion equation in time to find an intennediate 

velocity field, and then, in tum, applying the divergence constraint by projecting this intermediate 

field onto the space of divergence-free vector fields. 

Charm's original method was first-order accurate in time and second-order accurate in space. 

Various investigators have extended the projection method to second order accuracy, including 

Bell et al.[6], [7]. Kim and Moin [42]. Maday and Patera [47], and van Kan [64]. Bell and Marcus 

[9) applied the method to variable density flow. Here, the approach developed in Bell. Colella and 

Howell [7] is extended to solve the system of equations for reacting flow in the zero Mach number 

limit 1be major modification required is a way of compensating for the inhomogeneous diver­

gence condition, since the divergence of the velocity is no longer equal to zero. 

This thesis is divided imo four chapters. In Otapter 1, previous work on low Mach number 

models is reviewed and various numerical methods which have been used to treat low Mach num­

ber flow in the past are discussed. The chapter also includes a review of the development of the 

projection method. 

In Olapter 2, the scaling argument presented in Rehm and Baum (55). Sivashinsky [60], and 

Majda and Sethian [48] which leads to the derivation of the limiting system of equations for low 

Mach number reacting flow is discussed. To i~ustrate the ideas. the M -+ 0 limit for the simpler 

case of inviscid. compressible flow is discussed first. followed by a discussion of the more general 
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reacting case. 

In Chapter 3, the numerical method which is the subject of this thesis is presented. Again, for 

clarity, the method for incompressible ftow with variable density is discussed first. and then it is 

shown how to adapt the incompressible method to solve the enlarged set of equations for reacting 

ftow. 

FmaUYt in Chapter 4. results are presented and numerical convergence is verified. ~o calcula­

tions are included. One calculation shows the development of a non-reacting Rayleigh-Taylor 

instability, while the second calculation is of reacting flow in a closed adiabatic container. The first 

calculation is compared to that of Bell and Marcus [9] for validation purposes. 
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Chapter 1 
Review of Previous Work 

1.1 Low Mach Number Models 

Landau and Lifshitz [461 briefly discussed the conditions under which unsteady flow could be 

considered incompressible. First.. the characteristic local fluid velocity, U. must be much less than 

the sound speed. c; i.e. the Mach number M = U must be small. Second, if L is the length scale 
c 

of the domain and T is a characteristic time scale for the fluid where U - ~ • then T » ~. That is, 

the time taken by a sound wave to traverse a distance L must be small compared to the time scale 

during which the fluid undcIgoes significant changes. In particular, high frequency or long wave­

length sound waves are excluded by the condition U - LIT since the wavelength of sound waves 

is of the order cT - u: = ;.. «L. 

Ebin [27] and Klainerman and Majda [431 more rigorously explored the relationship between 

low Mach number flows and incompressible flows. Ebin gave a first analysis, while Klainennan 

and Majda gave a different, more complete analysis which included long wavelength acoustic cor­

rections. They proved that the solution of the system of equations for compressible flow reduces to 

the solution of the Euler equations as !YAM ~ 0 for a gas with equation of state 

p (p) = Ap Y + B where A > 0 and y> t. The proof was not extended to the non-isentropic case 

(and, therefore, not extended to reacting flow.) 

Charin [20] presented a numerical method for solving incompressible viscous ft.ow problems 

which involved taking the limit M ~ 0 numerically by introducing an artificial compressibility, o. 
The anificial compressibility was used as a parameter to speed up the convergence to a steady­

state solution; the final solution was independent of O. Rehm and Baum [551 were the first to use a 

hydrodynamic model for reacting flow that analytically removed acoustic wave e1fects. They 

derived a system of equations by nondimensionalizing the compressible flow equations and exam­

ining them in the limit of zero Mach number. Viscous effects were neglected. Sivashinsky [60] 

independently proposed a similar model for slow flame propagation where flows are characterized 

by low Mach numbers. He investigated the general three--dimensional case and included transport, 

kinetic. and viscous effects. Sivashinsky derived a full system of equations COnsisting of conserva ... 
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tion of mass. momentum. energy, and species t and an equation of state. In addition. be included a 

numerical solution to this system of equation for the case of combustion in a closed container with 

an infinitely thin flame. Ghoniem, Chorin and Oppenheim [30] used a low Mach number model as 

well in their investigation of turbulent flow in a combustion tunnel. where the effects of compress­

ibility were represented by volume sources at the front 

Majda and Sethian [48] introduced a modified system of equations for low Mach number 

reacting flow that was more tractable from a numerical standpoint than the system introduced by 

Sivashinsky [60]. Their system replaced the continuity equation by an evolution equation for the 

bulk thennodynamic pressure. 'Ibis switch simplified the design and implementation of their 

numerical scheme and made it easier to enforce the constraint imposed by the equation of state. 

The work. in the present thesis is based on the system developed by Majda and Sethian. 

1.2 Numerical Methods for Low Mach Number Combustion 

1.2.1 Lagrangian Particle Methods 

Only a few numerical algorithms have been developed to treat low Mach number reacting 

flow. One approach is to use a Lagrangian particle method such as that first introduced by gho­

Diem, Chorin. and Oppenheim in [30], and further developed by Ghoniem eL al.[31~37. 44. 50] 

and Sethian [581. These methods are based on the random vonex method (RVM) [23] which mod­

els turbulent eddies using vortex elements which are followed about in time, and a volwne-of-fluid 

Hame propagation algorithm [24]. The main advantage of such an approach is that it is inherently 

adaptive, putting the computational effon only into the regions where the vorticity is non-zero. 

Another advantage of the RVM is that it is grid free, and thus does not display effects such as 

numerical viscosity. 

Ghoniem, Olorin and Oppenheim [30] advance their solution using a fractional step scheme. 

In the first step, the vortex elements are advected and the divergence-free component of the veloc­

ity is found. In the second step. the flame is propagated and the gradient component of the velocity 

is calculated. This method was applied to the problem of combustion in an open channel where the 

flame is stabilized by a backward-facing step. The fluid model in [30] is based on the representa-
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tion of the flame as a thin moving surface. with the fluid on either side being incompressible. The 

How is taken to be two-dimensional, and the flame is treated as a constant-pressure deflagration 

wave propagating at a prescribed rate. Baroclinic effects are neglected. The calculations presented 

by (301 were able to capture many effects observed in turbulent combustion. such as the formation 

of large scale Bow structures. These results also assisted in explaining the role of hydrodynamics 

in Dame ignition and the mechanism behind exothermic processes. The calculations also helped to 

show the details of entrainment and mixing. 

Sethian [58] also used the RVM coupled with a flame propagation algorithm to analyze com­

bustion in open and closed vessels. He was able to show how the growth and development of 

counter-rotating turbulent eddies affect the flame, as well as how exothennal and viscous effects 

affect the burning front in combusting channel flow. Rhee. Sethian and Talbot [56] add a mecha· 

nism for computing the bamclinic generation of vorticity to their Lagrangian particle method used 

to compute an infinitely thin flame in an open channel. The vorticity across the flame front is cal­

culated using the Hayes model. 

To date. however, no calculations using Lagrangian particle methods have been performed for 

the case of low Mach number reacting flow in a closed container with baroclinic effects. Such 

methods have not been used because of the difficulty involved in calculating the baroclinic genera­

tion of vorticity across the flame front when the flame connects two regions of compressible gas 

with continuous density variations. 

1.2.2 Compressible Flow Schemes 

Another approach to numerically simulating low Mach number reacting flow is to use a 

scheme such as KIVA [3,4,5,41,51], KIVA, an algorithm originally developed at Los Alamos 

National Laboratory, solves the unsteady equations for a multi-component, chemically reacting 

mixture of ideal gases using a finite difference methodology. A particle method is used for calcu­

lating liquid sprays. and ALE (Arbitrary Lagrangian-Eulerian), a finite volume method for arbi­

trary hexahedroos, is utilized as a gridding method. KIVA uses turbulence modelling to compute 

kinetic energy dissipation and solves for the pressure iteratively. 

In the ALE method, spatial differences are calculated on a mesh consisting of arbitrary quadri-
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lateral cells in two space dimensions and hexahedral cells in three dimensions. All thermodynamic 

variables are defined at cell centers. (In KIVA-II, the velocities are defined at cell centers as well. 

The usual practice for ALE is to define the velocity at cell vertices.) The computational mesh is 

moved in a purely Lagrangian way while the chemical source tenns, the heat and mass diffusion 

terms, the pressure gradient, and the changes in density and internal energy due to the divergence 

of the velocity are calculated. Next, the solution is remapped onto a fixed Eulerian mesh. 

To handle flows with low Mach numbers, KIVA uses an acoustic subcycling algorithm. The 

terms associated with acoustic wave propagation (such as the pressure gradient term in the 

momentum equation and the terms involving the divergence of the velocity in the conservation of 

mass and energy equations) are differenced with a time step At. which satisfies the CFL condition 
cAt 
AX

s 
S I, where c is the sound speed and Ax is the mesh spacing. The remaining terms are differ-

enced using time step At which satisfies the constraint ~At ~ 1. where U is the advective fluid 
At QX 

velocity. Ats and At are related by A: =s M. For every time step At, approximately 11M time 

steps of size At. are perfonned to advance those terms of order W. Thus, when the Mach number 

is small this scheme is very inefficient To solve this problem. the Mach number is artificially 

increased while all other dimensionless parameters are held fixed to reduce the number of itera­

tions required. A disadvantage of acoustic subcycling is thal short acoustic waves are not damped. 

To remedy the problem, an explicit damping tenn is added to the momentum equation. 

KIVA's advantage is its flexibility. It has capabilities for solving problems with complex chem­

istry and complex geometry. Its efficiency and accuracy could be improvedy however. for low 

Mach number flow. 

1.2.3 All-speed algorithms 

Another approach to calculating low Mach number reacting flow is the use ofuall-speedn 

algorithms, schemes that are meant to model flows for any value of Mach number. All-speed 

schemes are based on the ideas presented in Charin [20]. In such schemes. the full non-linearprob­

lem is solved, and the equations are regularized to deal with the stiffness which arises from dispar­

ate time scales at low Mach numbers. These schemes can be used for both inviscid and viscous 

flows. and for any value of Reynolds number. 
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Preconditioning techniques have been developed to compensate for the effects of eigenvalue 

stiffness. Some of these techniques are general while others focus on the low Mach number 

regime. The preconditioning essentially scales the equations of motion so that the eigenvalues 

become of the same order of magnitude. The solution is then advanced in scaled time. For 

unsteady flow" an additional "pseudo-timeu term is added to the equations, and the solution is 

advanced in "pseudo" time. Examples of these schemes can be seen in Pletcher and Chen [54], by 

Briley, et. at .• [I5), Choi and Merkel [18, 19.28]. Dannenhoffer and Giles [26], Viviand et. aI. [53, 

67], 'TUrkel [63], and van Leer [66]. 

The advantage of an all-speed calculation is just what the name implies: it can deal effectively 

with flows that simultaneously display low and high Mach number regions, for example, high 

speed .flows with low velocities near stagnation points. The disadvantage of this approach is that it 

is difficult to solve the full non-linear system because of the complexity of the linear algebra. 

1.3 Projection Methods 

The projection method is a primitive variable finite difference method introduced by Chorin in 

[18, 22] to solve the incompressible Navier~Stokes equations. The method is a predictor-corrector 

scheme where the predictor step advances the solution of the advection-diffusion equation in time 

to yield an intennediate velocity field. In the corrector step. this field is projected onto the space of 

divergence-free vector fields to satisfy the divergence constraint. The original scheme was 

o (At + Ax2) for a domain with periodic lxn.mdary conditions in two or three dimensions, and 

required a fairly restrictive time step_ 

Gal-Olen and Somerville [29] implemented a variation on the projection method to solve the 

Navier-Stokes equations for topography using the staggered grid system of Harlow and Welsh [39] 

and explicit pressure terms in the predictor. Kim and Moin [421 extended the method to second­

order accuracy using an inhomogeneous ooundary condition for the intennediate velocity field. 

They treated the advective tenns using a second-order explicit Adams-Bashforth scheme and used 

a second-order implicit Crank-Nicolson discretization for the viscous !enns. As in [29], they uti­

lized a staggered grid representation. Van Kan [64] proposed another second-order accurate varia­

tion of the projection method. In this variation, time-centered advective terms were obtained using 
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linearized difference approximations to calculate spatial gradients. 

Maday and Patera [471 developed a spectral element projection method which converted the 

second-order Crank-Nicolson discretization of the advection-diffusion equation into a linear sys­

tem for the coefficients of Fourier modes in each element Another example of a spectral projec­

tion-type algorithm is the pressure-step last method (PSL) used by Coughlin and Marcus in [25) to 

compute turbulent bursts. 

In [38]. Gresho reviewed projection methods in an attempt to clarify issues relating to apply­

ing boundary conditions to intermediate velocity fields and viscous terms in fractional step 

schemes. He concluded that all intennediate boundary conditions create non-physical solutions. 

e.g., spurious boundary layers. at the walls, but accuracy is recovered by solving a bigher-order 

pressure Poisson equation. Simo and Armero [59] reviewed and tested projection methods as well 

in their work examining long-term behavior and unconditional stability for time-stepping algo­

rithms. They compared different versions of fractional step/projection methods to direct schemes 

with an augmented Lagrangian strategy in finding the solution to the driven cavity problem. They 

concluded that even though the projection methods they tested are unconditionally stable, these 

methods are limited by a restrictive time step, and thus are unattractive for use in simulations 

involving steady-state solutions. 

Bellt Colella and Giaz (BOO) [6] extended Chorints method to second-order accuracy by 

inttoducing more coupling between the ditfusion-convection step and the projection step. Advec­

tive terms were treated using a second-on:ier Godunov procedure. Ben, Colella and Howell [7] 

improved upon Boo's efficiency and robustness by altering the treaUDent of the advective terms to 

eliminate an instability that was observed for CFL numbers greater than Ill. They accomplished 

this by adding an additional MAC*type projection. Bell and MamlS [9] extended the projection 

method to variable density flows by defining the discrete approximation of the projection operator 

using a discrete divergence-gradient pair that was adjoint with respect to a discrete density 

weighted vector inner product. Strikwerda [61] researched projection methods as well in an 

attempt to determine a spatial discretization of the projection operator for cases where an compo­

nents of velocity are defined at cell centers. The discrete divergence-gradient pair he suggests are 

discrete adjoints with respect to scalar and vector inner products and lead to a projection that is 
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third-order accurate. 

9 



Chapter 2 
The Equations for Low Mach Number Combustion 

2.1 Scaling - Non-reacting Case 

The purpose of this thesis is to introduce a method to numerically solve the limiting system of 

equations which describes chemically reacting flow as the Mach number approaches zero. In flows 

with very low Mach numbers, it is observed that the pressure in the system remains nearly constant 

in space, exhibiting only small fluctuations around a mean value. The acoustic waves in these sys .. 

tems are weak and equilibrate very rapidly. These flows are frequently found in common engineer­

ing devices such as pumps, burners and internal combustion engines. 

The advantage of solving the reduced system of equations is that by analytically eliminating 

the acoustic wave effects, the time step in a numerical method will no longer be restricted by 

acoustic wave CFL constraints. It will, therefore, be possible to take time steps based on the fluid 

velocity, which will lead to an efficient nwnerical algorithm. 

The overall goal is to analyze reacting flow, but it is illustrative to first show how the scaling 

works in the simpler case of inviscid, compressible flow. By considering the simpler case, it is pos­

sible to establish that the analog of low Mach number flow is incompressible flow. The approach 

will be to first scale the governing equations so that the scaled pressure is of the ~e order of 

magnirude as the advective scales. Then, asymptotic expansions for the dependent variables will 

be substituted into the scaled equations, and terms of equal order will be equated to determine 

expressions for some of the terms in the expansions. Finally, those terms which vanish as M ~ 0 

will be dropped from the scaled equations to yield the limiting system. 

Consider first the inviscid. compressible, non-reacting How in a closed container. Variables are 

defined as follows: u = (u, v) is the velocity, p is the density. p is the pressure, t is the time. n is 

the bounded spatial domain. and c is the speed of sound. (Vectors are denoted by bold-faced type.) 

The equations describing inviscid. compressible flow are given by 

continuity, 

Dp 
Dt + P (V . u) = 0, (2.1) 

conservation of momentum, 
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pressure equation. 

Du 
p-+Vp = Ot 

Dt 
(2.2) 

(2.3) 

The boundary condition for the flow in a closed container is the "no-flown condition u . nlan = 0 

which states that the normal component of the velocity must be zero on the boundary. 

Consider an ideal gas with an equation of state p = pRT where T is the temperature and R is 

the universal gas constant The assumption is made that 1. the ratio of specific heats. is a constant 

and that 1> t. For such a gas, the square of the sound speed is equal to yp/p. It is therefore possi­

ble to replace pc2 in the pressure equation by yp. 

Let L be a characteristic length scale based on the size of the domain. n; U be a characteristic 

velocity based on the initial fluid velocity. U = max (U (x, 0) ) ; and p be a characteristic den­

sity, defined by p = J p (x, 0) dO. p, L and U are all of order unity_ The behavior being investi· 

gated is that of the fluid on time scales comparable to the advective time scale, T - ~. It is 

assumed that the ratio of local fluid velocity to local sound speed, lUI, is unifonnly small, and that 
c 

the variation of the dependent variables in x and t is of the order of the scales defined by L and T-

for example, ~ is of order ~2. In panicular, high frequency or long wavelength sound waves are 

excluded by the condition U - LIT. Sound waves which vary on time scales comparable to T 

have frequencies, f. which satisfy Tf - 1. If A. is the wavelength of such sound waves, then 
l L 

c -If - T' and l- M » L. 

A scaled pressure, p, is inttoduced, given by 

(2.4) 

where p is the initial mean pressure, defined by p = J P (xt 0) dO. It is possible to use p in the 

definition of soWld speed, c2 = ypl p. and define a Mach number based on this sound speed and 

the characteristic velocity, M2 = pu2/i'P. p can then be expressed as 

(2.5) 

With this scaling, p is of order unity with respect to the advective scales defined above and 

pi p - 0 (M2) . Equation (2.5) can then be substituted into the momentum equation which reduces 
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to 

Ou 1 V" p-+- P = O. 
Ot M2 

(2.6) 

It is assumed that asymptotic expansions in M .c 1 can be created for the scaled pressure, the 

velocity. and the density. of the fonn 

P (x, t) = Po (x, t) + MPI (x, t) + M2n: (x, t) + 0 (M3
) , 

u (x, t) = Uo (x, t) + MUI (x, t) + M 2u2 (x, t) + 0 (M3
). 

p (x~ t) = Po (x t t) + MPI (x, t) + M2p2 (x, t) + 0 (M3
) , 

(2.7) 

where each tenn, Pi' Ui and Pi" is of order unity as M -+ O. The same expansions are assumed to 

hold for the derivatives; for example, 

dp apo apt 201t 3 
ax (x, t) = ax (x, t) + Max (x, t) +M ax (x, t) +O(M ) t 

ap dpo dpt 2ax 3 at (x,t) = at (x,t) +Mat (x,t) +M at (x,t) +O(M ), 

(2.8) 

etc. Note that equation (2.8) will not be valid if there are long wavelength acoustic waves present 

If these expansion are substituted into the momentum equation (2.2). then 

(po + MP1 + 0 (M2) ) gt (uo + MUI + 0 (M2» = 

1 2 3 -2V (PO+MPI +M x2 +O(M ». 
M 

(2.9) 

Tenns of equal order in equation (2.9) can be equated to obtain expressions for individual 

tenns in the expansions. By equating tenns of order ~2 and M-1 
t it is seen that 

(2.10) 

and 

(2.11) 

Thus, the first two terms in the asymptotic expansion for the pressure. Po and Pt. are functions of 

time only. By equating tenns of order MO, the momentum equation is recovered 

Duo 
Po Ot = Vn:, (2.12) 

where x/p = 0 (M2) . Thus. the gradient of the oroer M2 pressure fluctuations is the forcing 
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tenn in the momentum equation. 

By combining equations (2.7) - (2.12). it is seen that the scaled pressure is given by 

p(x.t) = poet} +MPl {t} +M2
1t{Xt l) +O(M3

) 

where the 1t tenD is associated with the pressure gradient in the momentum equation. 

(2.13) 

It is possible to find more precise expressions for the terms in this expansion by repeating the 

process of equating tenns of equal order in the Mach number in the pressure equation. 'Ib do so, 

one begins by replacing p (x, t) by (~p + p) in the pressure equation (2.3) and inserting the 
M 

asymptotic expansions of p and u. This gives 

1 1 ~[~(Po+MP1+M2lt+O(M3»+pJ= 
Y[M2 (po + MPI + M2

lt + 0 (M
3» + pJ t M (2.14) 

-V· (uo+Mul +M2u2 +O(M3». 
Recall that pIp = 0 (M2) and. therefore. that po/p = 0 (M2) as well By equating terms of 

order MO. one finds 

1 D (po/M2 + p) 
--~-------- = -V-uo = fo(t). 
Y(Po/M2 + p> Ot 

(2.15) 

Since Po is a function of time only and p is a constant. V . Uo is also a function of time only; i.e., 

- V . U o = fo (t) . The no-flow boundary condition can then be applied to the velocity to show that 

fo (t) must be identically zero. That is. 

o = I (uo ' n)dA = I (V· uo)dO = f-fO(t) dO = -Cfo(t) (2.16) 

where C is a constant equal to the volume of domain O. Thus fo (t) = 0 which implied that 

OPo/Dt = 0 and V . DO = O. If 0Po/Dt equals zero. then Po (t) = Po (0) . Since p is the 

mean pressure, Po = O. By substituting these results into equation (2.14) the equation reduces to 

1 01 M0 2 -
1 Dt (M (PI + 11:+ (M» +p) = 

Y(M (PI + M11: + 0 (M2» +p) (2 .. 17) 

-V· (Mu t +M2u2 +O(M3». 
Repeating the argument in (2.15) and (2.16). it is seen that equating the terms of order M 1 in equa­

tion (2.14) gives 
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1 D - V 
M --D (PI/M + p) = - . u1 = f1 (t) Y p t 

which leads to the condition that PI (t) = Pi (0) = 0 and V . u 1 = O. 

(2.18) 

After equating the remaining terms of order Ml, recalling that 1t/p = 0 (M2) ,one finds 

1 D1t 
lP Dt = -V . u2 • (2.19) 

Since 1t is a function of both space and time, so is V . u2 and thus the divergence of the velocity is 

O(M2) for t ~ O. The continuity equation (2.1) shows that the material derivative of the density is 

O(M2) as well. 

It has so far been demonstrated that the total pressure for low Mach number non-reacting flow 

takes the fonn 

p (x, t) = p + 1t (x, t) (2.20) 

where 1t/p = 0 (M2). This scaling result is consistent with Bernoulli's equation for steady flow. 

which states that ~p - P U2 . It has also been shown that V . u = 0 (M2) . 

By taking the limit M ~ 0 and dropping the terms that vanish in equations (2.1) - (2.3). it is 

possible to obtain the following form of the equations for low Mach number flow: 

Du 
P Dt + V1t = 0, (2.21) 

V· u = 0, (2.22) 

Dp 
Dt = O. (2.23) 

If the density is initially constant in space, equation (2.23) implies that the density will remain 

constant for all time. For p (x, 0) = Po = P (x, t) t equation (2.22) combined with equation 

(2.23) reduces funher to the familiar form of the incompressible Euler equations for a constant 

density fluid 

Du 
Po Dt + V1t = 0, (2.24) 

V· u = O. (2.25) 

The same scaling analysis can be performed in the case of viscous flow, where the momentum 
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equation takes the fonn 

Du 
p- = -Vn:+V·'t 

Ot 
(2.26) 

where 't is the stress tensor, defined as 't = .... (Vu + (Vu) T) +, (V . u) . fJ. is the ordinary or 

first coefficient of viscosity. and , is the second coefficient of viscosity. 

The scaling argument can be repeated to arrive at the incompressible Navier-Stokes equations 

for an incompressible constant density fluid: 

PoDU = - V1t+ V· fJ.(Vu+ (Vu) T) t 

Dt 

V· U = o. 
Viscous tenns in equation (2.21) have been simplified by using equation (2.28). 

(2.27) 

(2.28) 

Equations (2.27) and (2.28) are fundamentally different from the equations for compressible 

flow. The compressible ftow equations are evolution equations for (p t U, p) and, given initial 

conditions, they form a well-posed initial value problem. In contrast, the incompressible Navier­

Stokes equations are a combination of an evolution equation and a constraint on the velocity that is 

independent of time. 1be presence of V1t further complicates matters; there is no obvious evolu­

tion equation for the pressure. 

Equations (2.27) and (2.28) can be better understood by introducing the concept of a projec­

tion. This concept is based on the Hodge (or Helmholtz) vector decomposition which splits an 

arbitrary vector field into two orthogonal components, one divergence-free and the other the gradi­

ent of a scalar field. That is, if w = w (x) is some vector field defined on a spatial domain Ot 

then w can be written as 

W = ud + Vq> (2.29) 

where V . ud = 0 t ud • n = 0 on an, and q> is the solution to the elliptic equation 

aq> = V • w, acpl an ao = w· n lao· (2.30) 

This is an onhogonal decomposition; i.e., 

J (ud . Vcp) dx = O. (2.31) 

Given this decomposition. it is possible to define a projection operator. P, such that P acting 
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on w will extract its divergence-free p~ thus projecting wonto the space of divergence-free vec­

tor fields. That is, P (w) = ud • The relationship between the projection operator and the gradient 

componentofwis (I-P)w = Vcp. Note thatP operating ona gradient is zero. P(V",) = 0. 

and P operating on a divergence-free field leaves the field unchanged, P (ud) = ud for 

V . ud = 0, ud . n I dO = O. Thus. p2 = P. 

The projection operator can be applied to the Navier-Stokes equations to obtain the projection 

fonnulation 

au p dt = (-(u·V)u+V'-r). (2.32) 

This fonnulation converts the Navier-Stokes equations into a single evolution equation for the 

velocity for which the constraint (2.28) is automatically satisfied if V . U = 0 at time t = O. 

Given initial conditions that satisfy the constraint. this is a well· posed initial value problem. In 

addition. the projection formulation also enables us to understand more clearly the function of the 

pressure gradient which satisfies the equation 

Vlt = (I-P) (-(u·V)u+V.-r). (2.33) 

Thus, V 1(; is the gradient piece that is stripped away when the projection operator is applied to sat­

isfy the divergence constraint. 

A projection operator for variable density flow is defined in an analogous mannet It is possible 

to decompose a vector field w = w (x) defined on a domain n into two orthogonal components 

as 

1 
w = ud + - Vcp, 

P 
(2.34) 

where V . ud = 0, ud . n = 0 on a~. and cp is the solution to the elliptic equation 

1. acpl = w· nlan, 
pan an 

(2.35) 

where 

(2.36) 

This is an orthogonal decomposition with respect to a density weighted inner product.; i.e .• 
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(2.37) 

Equation (2.34) is the analog of the Hodge decomposition for a variable density ftuid. 

As in the constant density case, it is possible to define a variable density projection operator. 

P P' such that P p acting on w projects it onto the space of divetgence-free vector fields. That is. 

P p (w) = ud and (I - P p) w = ~ V,. This projection operator can be applied to the variable 

density Navier-Stokes equations and the projection fonnulation can be obtained: 

au 1 
~ = P (- (u . V) u + - V . 1:) . 
at P p 

(2.38) 

Once again, an evolution equation and a constraint independent of time have been convened into a 

single evolution equation for the velocity. The pressure gradient for variable density flow is given 

by 

1 1 
- V1t = (I-P ) (-(u· V) u + - V . 1:). P P P 

(2.39) 

Equivalently, if one has a guess for the pressure field, KO • equation (2.39) can be written in 

correction form as 

1 I P 1 1 ° -Vb = (- ) (-(u· V)u+ -V· 1:- -V7t ) 
P P P P 

(2.40) 

where b. the pressure increment, satisfies 1t = 1t0 + o. This fonn will be useful in djscussing dis­

cretization methods in Cltapter 3. 

There are several ways of applying a projection operator to a vector field w = w (x) • but they 

are all mathematically equivalent to perfonning the following steps ifw is sufficiently smooth: 

first. take the divergence ofw, thus forming the right-band side to the elliptic equation (2.35) 

which can be solved for the scalar field, <p. Once cp is known. grad (cp) is easily constructed and 

can be subsequently subtracted from w to find the divergence-free component, ud• 

2.2 Scaling • Reacting Case 

The previous scaling argument can be extended to the case of reacting dow in a closed adia­

batic container where the follOwing assumptions are made: 

1. Reactants go to products irreversibly in one step. 
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2. All fluid properties. e.g., the diffusion coefficients, lC and 1])1 and the viscosities, J.L and ~, 

are constant. 

3. There are only two species of gas. burned and unburned, which have the same molecular 

weighL Having only two species will enable the conservation of species equation to be written in 

tenns of a single variable. the mass fraction, defined as the fraction of unburned mass to total mass. 

4. Both reactants and products are governed by the same 'Y-gas law. 

S. Radiative heat transfer effects are negligibJe. 
c 

6. The gas is polytropic; the specific heats cp and Cv are constant. and 'Y = .1!. 
Cv 

Since both the first and the second coefficients of viscosity are constant, the divergence of the 

stress tensor reduces to V . t = J.l.Au + ~V (V. u). The pressure can be combined with the sec­

ond tenn of V . t to fonn a modified pressure given by 

1t := Jt + ~V . u, (2.41) 

where the notation A := B denotes "update in place" notation: the value of A is replaced by B. 

Thus the gradient tenns in the momentum equation can be consolidated. 

Given these assumptions. the system of equations that describe the flow is given by: 

continuity, 

Dp 
-+p(V·u) = ° Dt 

conservation of momentum, 

conservation of energy, 

conservation of species, 

Du 
p- =-V1t+J.I.~u 

Dt 

DZ 
p- = 1>(V·pVZ)-kpZ 

Dt 

ideal gas equation of Stale, 
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~I = 0, 
nn an 

u· nlan = Ot 

aOTI = 0, 
nan 

~I = 0, 
aD an 

(2.42) 

(2.43) 

(2.44) 

(2.45) 



p = .R.. 
RT 

(2.46) 

where cpis the constant pressure specific heat. lC is the coefficient of thermal diffusion, qo is a the 

heat of reaction, k = k (T) is the reaction rate, 'D is the coefficient of species diffusion. T is the 

temperarure, Z is the mass fraction. and 4J is the viscous energy dissipation given by 

4J = V . (u . 't) - U· (V . 't) . (2.47) 

For a two--dimensional flow, the expression for ~ reduces to 

[
du 2 av2 1 au av~ au av 2 

cD = 2J.L (ax) + (ay) + 2 (ay + ax) J + ~ (ax + ay) . (2.48) 

An asymptotic analysis similar to the one perfonned for the non"reacting case can be per-

fonned for the reacting case. Once again, units are selected so that p, L and T are of order unity, 

U - LIT. and M « 1. A scaled pressure, p, is introduced, defined as it was in equation (2.4) 

where p is the mean pressure, p (t) '" I P (x. t) dQ. By substiblting (~2 P + p) for p (x, t) in 

the momentum equation (2.43) and equating the tenns of equal order in the Mach number; it is 

possible to arrive at the same conclusion that was reached for the non-reacting case, namely that 

the first two terms in the asymptotic expansion for p, Po and PI' are functions of time only_ By 

balancing the terms of order M O
" it can be shown that 

Duo 
Po Dt = Vx + J.LAUO· (2.49) 

For the reacting case, the total pressure is given as the sum 

p (x, t) = p (t) + X (x, t) (2.50) 

where p, the mean pressure. is a bulk thermodynamic pressure, and 1t denotes the pressure ftuctu­

ations. Again, 11: is of order unity with respect to the advective scales and x/p = 0 (M2) . 

Now that the scaling for the total pressure is known, it is possible to obtain a generalization of 

the incompressibility constraint (2.28). In particular, the thennodynamic relations can be analyzed 

to find an expression for the divergence of the velocity and an evolution equation for the bulk. ther .. 

modynamic pressure. To begin the analysis, it is necessary to combine the first law of tbennody-

namics, 
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the definition of enthalpy, 

1 
de = dq - pd ( - ) t 

P 

h = e+p/p, 

and relationships for internal energy and enthalpy for a polytropic gas, 

de = cvdT, 

dh = cpdT, 

(2.51) 

(2.52) 

(2.53) 

where e is the internal energy. h is the enthalpy, q is the heat, and c., is the specific heat for constant 

volwne. From this combination. two expressions for energy are obtained: 

(2.54) 

and 

(2.55) 

If these energy equations are used to describe Lagrangian parcels of fluid, all differentials may 

be replaced by material derivatives, i.e, d" -+ : = ~ + (u· V)". TIle result is two energy 

equations. 

(2.56) 

and 

(2.57) 

The Lagrangian energy derivative. p ~i . can be replaced by tems describing heat creation, 

heat diffusion. and the viscous dissipation in the system. That is, P ~i can be set to 

V· (x:VT) + CJokpZ + til in equations (2.56) and (2.57) in light of the assumptions listed previ­

ously. After these substitutions, the following equations result: 

DT pDp 
pc - = --+1CAT+o-kpZ+cz. 

v Dt pDt -au 
(2.58) 

and 
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(2.59) 

It follows from the equation of state that 

T ':: = 0(1). 
P 

(2.60) 

Equation (2.59) can then be written 

pCp DT 1 Dp 1CAT qokpZ cIJ 
--:=-- = :-+---+ +-=. 

p Dt pDt P P P 
(2.61) 

If qo/T is of order unity. then an terms in equation (2.61) are of order unity except for the viscous 

energy dissipation tenn: ~ is of order 111 Vul2 , which. from the argument presented in equations 
p 

(2.4) - (2.20), is of order 1t and ! - 0 (M2). Note that the assumption that 
p 

(J.1IVuI2) Ip - 0 (M2) is only good if the 'viscosity is sufficiently small. This would not be a 

good assumption. for example, to apply to Stokes flow. In addition, the pressure tenn in equation 

(2.61) can be expressed 

! Dp = ! Dj) +O(M2) = ! dp +O(M2). 
pDt pDt pdt 

(2.62) 

Thus, to leading order in M2. equation (2.61) is given by 

DT dp 
pcp Dt = dt +dT+qokpZ, (2.63) 

and, similarly, equation (2.S8) is given by 

pc DT = ,eDp + 1CL\T+ %kpZ. 
v Dt p Dt 

(2.64) 

Equation (2.64) can be used to find the constraint on the velocity divetgence. By substituting 

the equation for conselVation of mass, ! DDP = - (V . u) t into the energy equation (2.64) and 
p t 

solving for the velocity divergence. the result is 

v· u == ! (-pc DT + (KaT +qokpZ}) 
p v Dt 

which can be written equivalently, with the definition 'Y = cpl cv ' as 

1 dp 
V· u = yp (- dt + (y-l) (lCAT+qokpZ)). 

(2.65) 

(2.66) 

Equation (2.66) is a constraint on the velocity divergence for the reacting flow case. The right band 
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side of this equation can he viewed as a distributed volume source, where a positive contribution 

results in expansion of the gas and a negative contribution results in compression. It is expected 

that the largest variations in the temperature the combustive heat release will be in the region of the 

flame. Consequently, the volume source is largest in this region and the gas expands only at the 

flame fmnL Away from the front, the volume source is nearly equal to - ~~ and the gas is being 

compressed. 

The role of the temporal derivative of the mean pressure can be understood by examining its 

evolution equation. This equation can be derived by using equation (2.66) in conjunction with the 

no· flow boundary condition. From the boundaly condition. 

J (u· n) dA = O. 
an 

This boundary condition can be expressed equivalently as 

f (V. u)dO = O. 
o 

(2.67) 

(2 .. 68) 

Applying this form of the boundary condition to the right hand side of equation (2.66), the result is 

1 d­J --= [- dP + (y- 1) (leAT + qokPZ)]dO = O. 
n YP t 

(2.69) 

Since p is a function of time only. it can be taken outside the integral. Equation (2.69) will 

then reduce to an evolution equation for the mean pressure 

dp (1-1) r 
dt = vol (0) 6 [leAT+qokpZ] dO. (2.70) 

Because the flow is contained in a closed adiabatic vessel. this equation can be reduced further to 

(2.71) 

Equations (2.70) and (2.71) show that mathematically, the role of thennodynamic pressure is to 

insure that the solvability condition for equation (2.66) is satisfied. A physical interpretation of the 

role of the thermodynamic pressure will be given in section 2.4. 

As in the non-reacting case, the previous scaling analysis is only valid if equation (2.66) is sat­

isfied by the initial velocity. H it is not, it is possible for lalXe acoustic variations to develop and for 
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the flow to exhibit large-amplitude acoustic waves. This initial constraint is referred to in Majda 

and Sethian [48) as chemical fluid balance. Note that this is a condition that affects only the scalar 

potential portion of the velocity and is not, therefore, panicularly resUictive. The initial diver· 

gence-free piece of the velocity, the piece which is associated with vortical motions. can be chosen 

arbitrarily_ 

1.3 The Low Mach Number System of Equations for Reacting Flow 

The system of equations used in this investigation is based on the system developed by Majda 

and Sethian [48] where the variables u, T. Z. p, and 1t. i.e .• the velocity. the temperablre. the mass 

fraction. the density. and the pressure. respectively, all vary in x and t. p, the bulk. thennodynamic 

pressure, varies in time only_ The system is composed of the following equations: 

conservation of momentum, 

Ou 1 J.L - = --V1t+-4U 
Ot p p u· nlan = 0 , 

conservation of energy, 

DT d-
pc - = ~+K4T+lL.kpZ 

PDt dt '"IU 

conservation of speCies. 

OZ 
p- = ~(V. pVZ)-kpZ 

Ot 

ideal gas equation of swe, 

P - p 
- RT' 

evolution equation for the bulk thermodynamic pressure, 

~Ian = O. 

dp (1- 1) J 
dt = vol (n) (qokpZ + 1CL1 T) dn, 

n 

divergence constraint on the velocity. 
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1 dp 
V . u = S = yp (- dt + (y - 1) (qokp Z + leA T) ) t 

S = Acp, ~I = O. 
aD an 

(2.77) 

Note that there is not a separate evolution equation for p. Instead. the density is detennined by 

p and T by using the equation of state (2.75). Conservation of mass is imposed in the divergence 

constraint (2.77). 

As in the reacting case, the momentum equation and the divergence constraint present a com­

bination of an evolution equation for the velocity and a constraint on the velocity that is indepen­

dent of time. A projection fonnulation was introduced in the non-reacting case to convert the pair 

into a evolution equation for the velocity for which the constraint is satisfied automatically. The 

identical formulation is not appropriate for the reacting case because P (~~) "*:- (i.e .• the veloc· 

ity is not a divergence-free field.) 

However, A variation of this fonnulation can be used. This variation is also based on the 

Hodge decomplsition to solve equations of the fOMl 

Du 
Dt = -Va + ).l.t\u 

V·u = S 

where S denotes the volume source in equation (2.77). 

(2.78) 

(2.79) 

The fluid velocity can be rewritten as the sum of two orthogonal components, one divergence­

free and the other the gradient of a scalar field 

U = ud + V"" (2.80) 

where V . ud = 0, ud . Dian = 0, and. f (ud , Vv> dx = O. Unlike in the non-reacting case, 

V'll is non-zero. The gradient V'll satisfies the divergence constraint on the velocity by satisfying 

the relationship 

V· U = A'V = s. (2.81) 

Given this definition of the velocity, the momentum equation can be rewritten as 

:' - ;t(VV) + g/VV) = - (u· V) u - ~ V1t+ *AU. (2.82) 

By using the fact that u - V", = ud is divergence-free and applying the projection, an evolu-
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tion equation for u without the constraint may be obtained. This evolution equation is given by 

(2.83) 

where 

(2.84) 

By applying the chain rule, = can be expressed in tenns oflhe spatial derivatives ofT and Z as 

as = asar + asaz (2.85) at aTdt azat 

where the temporal derivatives in T and Z can be evaluated in tenos of spatial derivatives by using 

the governing equations (2.73) and (2.74). 

Equation (2.83) is the analog of the projection fonnulation of the Navier-Stokes equations for 

the reacting case. and given initial oonditions. fOnDS a well-posed initial value problem. The equa­

tion for the pressure gradient corresponding to equation (2.39) is given by 

! V1t = (I - Pp) ( ~ (V",)-(u· V) u + ~Au). 
P ot P 

(2.86) 

Equivalently, given a guess for the pressure field, ft° t the following equation can be derived for 

2) = ft-ftG: 

1 dill G -Vo = (I-Pp) (-4--(V",)-(u·V)u+-Au--V1t ). 
p at' p p 

(2.87) 

2.4 A One Dimensional Example 

A one-dimensional example is presented to illustrate the nature of the compressibility effects. 

Consider an adiabatic container with homogeneous boundary conditions for the velocity at x = 0 

and x = 1. To the left of the center is hot burned gas. 1b the right of the center is cold unburned gas. 

Where the hot and cold gas meets in the center. heat will diffuse from the hot region to the cold 

region, and the burned and unburned gas will begin to diffuse into one another. When sufficient 

heat has diffused into the unburned gas to raise it to the auto-ignition temperature. a flame front 

will develop. Heat will be released only locally at this front. as a result of the chemical reaction. 

The heat release profile is illustrated in Figure 2.1. 
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Figure 2.1 Heat release vs. X for a one-dimensional flame front 

In one dimension. the velocity divergence is given by 

au 1 ( dp ( alr)) - = --= - - + (1-1) qolc:pZ+ lC- . ax yp dt ax2 
(2.88) 

1be divergence profile that corresponds to the heat release profile above is pictured in Figure 

2.2. Note that the temporal derivative of the mean pressure adds a uniform contribution to the 

divergence. unlike the heat diffusion and energy source terms which are only non-zero at the loca­

tion of the ft.ame front 

Figure 2.2 shows clearly where compression is occurring and where expansion is occuning. 

F . f . d' . au 1 Dp Th ~ 'f au . . . Dp rom conservanon 0 mass In one Imel1Sl0n. r = -- D' ere.lore., 1 r IS posl1ive. -0 
oX p t aX t 

must be negative and expansion must be taking place. Conversely, if: is negative, compression 

results. From the figure9 the velocity divergence is seen to be negative except in the neighborhood 

of the flame front. Thus, the gas is being compressed everywhere except at the front., where the gas 

is expanding, 

The velocity profile is shown in Figure 2.3. As indicated by the divergence profile, the velocity 

decreases linearly from zero from the left boundary to the flame front. At the front, the sign of the 

velocity flips from negative to positive, and the velocity once again decreases linearly to meet the 
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condition at the boundary. 
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Figure 2.2 Divergence vs. X for a one-dimensional flame front 

In summary, volume sources for the reacting flow are only non-zero in the vicinity of the flame 

front where the heat is being released. The tbennodynamic pressure, however, is spatially unifonn 

to O(W). which means that this heat release results in a uniform compression within the spatial 

domain 1bis compression exactly balances the expansion that occurs along the {lame front. 

Figure 2.3 Velocity vs. X for a one-dimensional flame front 
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Chapter 3 
Projection Methods 

3.1 Finite Dirrerence Methods and Nomenclature 

Finite difference methods are a class of numerical methods for solving differential equations in 

which the derivatives in the governing equations and boundary conditions are replaced by divided 

difference approximations. Ttme is divided into small increments of ~ t called time steps. It is 

assumed that at the beginning of each time step, at time 1. a discrete approximation to the solution 

which satisfies appropriate boundary conditions is known. The object of the scheme is to advance 

the solution in time and obtain an updated solution at time tD + At. As many times step as neces­

sary are perfonned until the desired final time is reached. 

The spatial domain is discretized as well into finite difference cells, each with area Ax x Ay . 

The center of each cell is located at «i - 1/2) Ax, (j - I/2) Ay) and is denoted as cell (iJ) 

where i = 1, ...• nx: j = 1, ...• ny. The left edge of each cell is located at i - 1/2, j. the right edge at 

i + 1/2, j t the top of the cell at i, j + 1/2, and the bottom at i, j - 1/2. Discrete variables are 

indexed by location and time. i and j are spatial indices, written as subscripts, which correspond to 

particular finite difference cells. n is a time index. written as a superscript. which corresponds to a 

particular time step. 

3.2 Chonn's Method 

Charin [21] presented a numerical scheme to solve the Navier-Stokes equations based on the 

fonn written in equations (2.38) and (2.39). This algorithm is a fractional step scheme: in the first 

step. nonlinear and viscous terms are evaluated and used to advance the advection-diffusion equa­

tion in time by solving 

bU· -BUD = F(U), (3.1) 

where UD = (uD
t vn) is the discrete velocity at time tn, TU = bUD+ 1_ BUn is an approxima­

tion for :~. and F(U) is a discrete approximation for the advective. viscous. and body force tenns. 

An example of a discretization for equation (3.1) is 
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(3.2) 

The result of solving equation (3.1) is an intennediate velocity field, tr, which does not, in gen­

eral. satisfy the divergence constraint 'The second step involves applying the projection operator to 

enforce the constraint. and using the divergence-free vector component to update the velocity. 

(3.3) 

There are several issues that must be addressed in implementing the projection method. One is 

the discretization of the projection operator, specifying how exactly P is going to return a dis­

cretely divergence-free vector field and defining "discretely divergence-free". Another issue is 

temporal discretization. Chorln '5 methOO is second-order accurate in space but only first-order 

accurate in time because the projection operator does not commute with the Laplace operator in 

the presence of boundaries. A second-order accurate method is desired. Spatial discretization is a 

third issue. The goal is to use high-resolution finite difference methods to discretize the advective 

tenns which work well in the presence of strong gradients. Finally, a method that is restricted only 

by the advective CFL number, regardless of the value of viscosity, is desired. 

3.3 Discretizing tbe Projection 

The discretization of the projection operator is based on the discrete Hodge decomposition, 

which decomposes an arbitrary discrete vector field into two orthogonal components, one dis­

cretely divergence-free and the other the discrete gradient of a scalar. That is, 

W = Ud+Gcp (3.4) 

where DUd = 0, and D and G are difference approximations to div and grad. 

Chorin discretized the projection operator using operators that were adjoints with respect to an 

appropriate set of vector and scalar inner products. More precisely, he used discrete divergence 

and gradient operators that satisfied the adjoint relationship 0 = -G T. The discrete Laplacian 

was defined by Lh = DO. 

Applying a projection operator can be done in several ways. but aU of them are mathematically 

equivalent to performing the following steps: 

1) Solve 
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(3.5) 

2) Find Ud = W - Gq>. 

Equation (3.5) is always solvable even though Lh is not invertible; OW is in the range of L h 

because of the adjoint relationship D = -G T. Also, despite the fact that the solution to equation 

(3.5) is not unique, Gq> is independent of the panicular choice of solution to equation (3.5). 

The projection operator has several properties. First. because of the adjoint relationship. 

p = pT. Second. because it is a projection. the discrete operator satisfies p2 = P. Third. it is 

easy to show using these two properties that 

IIP(W)II~IIWltt (3.6) 

where II \I is the discrete L 2 norm derived from the vector inner product. 

(U, V) = L (U i, j . Vi, j) AxAy, and "QII = (Q, Q)1/2. We shall refer to such operators as dis­
. i.j 

crete proJectlon operators. 

Unfonunately. the discretization of the projection operators has some serious drawbacks for 

the case where the components of the velocity are centered at the same location, e.g .• 

w ( (i -1/2) AXt (j - 1/2) Ay) = W i,j = (ui,jl vi,j) . One disadvantage is that an operator 

where Lh = DG can lead to non·standard Poisson operators which complicate the linear algebra. 

For example, a divergence - gradient pair made of central difference operators yields an L h that is 

locally decoupled into independent operators defined on each of four disjoint subgrids. Another 

example is the complicated linear algebra which results from the discrete projection operator 

formed from the non-symmetric D and G operators introduced by Strikwerda [61]. This discrete 

projection operator is expensive to compute and is not robust in the presence of large density vari­

ations. More precisely, to compute a Strikwerda projection. it is necessary to take higher order dif­

ferences of the density field, which, for large density variations. can lead to the generation of 

spurious high wavenumber mooes, even for a smooth initial right hand side of equation (3.5). 

The approach taken in this thesis is not to use a discrete projection operator where p2 = P, 

but rather to use a consistent discretization of the continuous projection operator where L h ;II!: DO t 

and, thus t an operator where p2 ~ P. We shall refer to these discretizations as approximatt! pro­

jection operators. The use of approximate projection operators is an approach that has been taken 

by Almgren. et. ala [2] where the discretization of the operator is based on finite elements. In this 
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thesis, a discretization is used for the projection where the divergence and gradient are defined 

using centered differences. and L h is discretized by a standani five-point representation. The 

approximate projection is stable; a relationship analogous to equation (3.6) will be derived in sec­

tion 3.4. 

To apply the approximate projection operator to a discrete vector field W = U d + Gtp. several 

steps are performed. First. the Poisson equation 

(3.7) 

is solved for cp. 'The divergence-free field is then found b~ subtracting Gcp from W. The result is 

Udt the projection of vector field w.1bat is. P (W) is given by 

For variable density flow, first solve the Poisson equation 

L~CP = DoW. 

(3.8) 

(3.9) 

The divergence-free field is then found by subtracting Go pcp, a discrete approximation to 1. Vcp, 
• P 

fromW 

(3.10) 

Next, the operators used in equations (3.7) - (3.10) are defined. The discrete divergence opera­

tor is given by 

u· l' - u· l' v·· 1 - V·· 1 D U = 1+ ,J 1- d + I.J+ 1.)-. 

o 2Ax 2Ay 
(3.11) 

The discrete gradient operator for the variable density case, Go. P' is given by 

( 
1 CPi+l,j-CPi-l,j 1 CPi,j+l-CPi,j-l) 

(Go pcp) . = 2 ' - 2A . 
, l, j p. . Ax p. . y 

~J ~J 

(3.12) 

Go' the discrete gradient operator for the constant density case, is equal to Go, p if the density is 

set to unity. Ah. the discrete elliptic operator for the constant density case, is a cell-centered five-

point Laplacian given by 
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h 1 
( A <p) i. j = Ax2 (<Pi + I, j - 2 <Pi. j + <Pi - 1. j) 

1 + -2 (<p.. 1 - 2cp. . + cp.. 1)' A y It J + 1, J I,] -

(3.13) 

L~ l the discrete elliptic operator for the variable density case which corresponds to a discretization 

of Lp in equation (2.36), is given by 

(Lhcp) .. = _1_ ((<Pi+l,j-CPi.j) _ (<Pi,j-CPi-l. j») 
P loj Ax 2 Pi + 1/2. j Pi - 1/2, j 

1 ( (CPi. j + 1 - <Pi. j) (cpi. j - CPi, j - 1) ) +- --...;..;;..-..;...::.--
Ay2 Pi.j+ 1/2 Pi,j -1/2 . 

(3.14) 

The density values at cell edges in equation (3.14) are obtained by averaging the values of density 

in adjacent cells. For edge i+ 112. j. the averaged density is expressed by 

1 (3.15) Pi + 1/2. j = 1 1 1 
-(-+ ) 
2 p.. p. l' 

1.) J+ d 

Three sets of boundary conditions are required to complete a projection: a set for Do, a set for 

Go' and a set for solving the Poisson equation [(3.7) or (3.9).] Do and Go carry their own bound­

ary conditions. where those for Do are the physical boundary conditions for the problem, and 

those for Go are non-physical and are set using second-order polynomial extrapolation. The Pois­

son equation is solved using homogeneous Neumann boundary conditions. 

Boundary conditions are applied to the divetgence operator by setting fluxes at the boundary 

edges. Do is defined in tenns of fluxes as 

(0 U) = Fi+1/2,j-Fi-1/2,i+Fi,j+1/2-Fi,j-1/2 
o i,j Ax Ay 

(3.16) 

where F denotes flux and the definition of flux on the domain interior edges is 

1 
F i + 1/2,j = 2 (ui+1.j+ui.j) 

1 
F .. + 1/2 = - (v .. + 1 + v· .) l,J 2 ld I,J 

i = 1, ... , nx - 1 t 
(3.17) 

j=l •... ,ny-l. 

For example. to apply the physical boundary condition W . n = 0 t the flux at the edges of the 

domain is set to zero; e.g., Fl/2,j = Fnx+l/2,j = Fj.1/2 = Fj.ny+1/2 = O. 
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Boundary conditions are applied to the gradient operator using second-order polynomial 

extrapolation to extend values of the scalar field. cp. to the first row of cells outside the domain. 

These extended values are then used to detennine the gradient in the first row of cells in the 

domain interior. For example. the cells just outside the left hand side of the domain are calculated 

by 

<Po . = 3 (<p 1 . - cp~ .) + <P3 . , d .j ... J ,J 
(3.18) 

and the expression for the gradient at the left-most interior cell is given by 

1 cp .... - <Po . 
(0 ) lit - ... J .j 

o.pCP l.j - Pl' 2Ax • 
d 

(3.19) 

Second-order extrapolation of the scalar field is equivalent to a first-order extrapolation of the 

gradients on the mesh to detennine the gradient at the boundary. In other words. Go can also be 

defined as the average of mesh-centered gradients 

(3.20) 

where 

(3.21) 

These mesh-centered gradients can be linearly extrapolated to the domain boundary. Thus, the gra­

dient at the left edge of the domain, G~2. j' can be expressed 

M M M 
0l/2,j = 2G3/2,j - GS/ 2• j' (3.22) 

The gradient on the first row of cells in the interior is then calculated using these extrapolated val­

ues. The cells on the left interior edge, for example, are calculated by 

(Go pcp) x . = r-- (G~2,j + G~2,j) .. (3.23) 
t 1.1 Pi,j 

Homogeneous Neumann boundary conditions are applied to L~ in a similar way. A finite dif­

ference approximation is used 'to find the value of the scalar field in the cells just outside the 

33 



domain. and these values. in tum. are used to calculate L~ at the interior edge cells. For example. 

the boundary condition ~'PI = 0 is enfon:ed at the left edge by setting ~lls just outside using 
x left 

the finite difference approximation for gradient on the boundary 

(3.24) 

Thus. CPo . is set to '1 'f etc . • J .J 

Bell. Colella and Glaz [6] discuss at some length the issue of accuracy for the projection given 

sufficient smoothness of the pressure in the absence of boundaries. Their analysis. however, does 

not extend to the case where there are boundaries since, in that case, operators do not commute. 

They conclude that it is difficult to detennine the order of accuracy of the projection with boundary 

conditions; an 0 ( (J.l.At) 1/4) errortenn seems to be introduced in the pressure, and an 0 (J.l.At) 

error tenn seems to be introduced in the velocity. Both terms appear to be an artifact of the analysis 

since it is observed that their numerical convergence srudy indicates sufficient accuracy. Second­

order accuracy is observed as well for the algorithm presented in this thesis, as discussed in section 

4.2. 

Regarding the question of solvability, note that L: with boundary conditions has a one-dimen­

sional null space consisting of scalar fields that are constant throughout the mesh. Equation (3.9) is 

solvable, however: Do W is in the range of L~ and is orthogonal to constant scalar fields which are 

the null space of L~. That is, if the discrete scalar inner product is defined by 

('If, cp)= "", .. cp .. AxAy, then 
~ 1,] t,j 
1.j 

(1, DoW) = o. (3.25) 

Furthennore, the non-uniqueness of the solutions to equation (3.9) poses no difficulty. Solutions 

will be unique up to an additive constant, and since Go<p = Go (, + c), the gradient will be inde­

pendent of the choice of solution. 

Nex~ it is shown that the solution obtained by the procedure described above gives a consis­

tent discretization to equation (2.35), 

lacp 
--r=w·non an, pon 

(3.26) 

where Lpcp is defined in equation (2.36) and we assume J (w· n) dA = 0 so that equation (3.26) 
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is solvable. The problem can be split into two pieces. 

and 

acpoi 
"I\.::" = 0. 
aD ao 

1 acpao 
-~ = w . n on ao. pon 

(3.27) 

(3.28) 

where ., = CPo + 'ao satisfies equation (3.26). It can be shown that the solution to equation (3.9) 

can be written as an analogous sum: if cp satisfies equation (3.9), then ., = <PI + CPB where 

L~CPI = D1W 

is a consistent discretization of equation {3.27}. and 

(3.29) 

(3.30) 

is a consistent discretization of equation (3.28). DJ W is defined by equation (3.16), except the 

fluxes at the boundary are set by linear extrapOlation. For example. the flux at the left boundary is 

set by 

(3.31) 

DB W is then defined as DB W = DoW - DI W. It can be shown that DB W = 0. except at cens 

adjacent to the boundary, where 

Fl/2,j 
(DBW) 1 '=-A-' d uX 

(3.32) 

etc. If W . n = 0 on an, then 'I'1l is zero and cP = CPr However, if W . n ~ 0 on the boundary, 

then .!.OOCPB is the potential field that corrects for the inhomogeneous boundary condition and p 
accounts for the extent to which W . n '* O. 

3.4 Accuracy and Stability of the Approximate Projection Operator 

In this section, it will be shown that the approximate projection operator defined above is sta­

ble; that is, 

IIPUSl (3.33) 

for the case of a constant density fluid with doubly periodic boundary conditions. This is one of the 
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key properties used by Chorln in proving the convergence of numerical methods used to solve the 

Navier-Stokes equation in [22]. It will also be shown that the approximate projection operator is a 

second-order accurate discretization of the continuous operator defined in equations (2.29) -

(2.39). Note that the analysis that follows is only valid for the constant density case and does not 

easily extend to the case of a variable density fluid. 

Fourier analysis will be used to prove stability. where continuous Fourier modes are given by 

(3.34) 

and i = H; k = (ieI' k2) and ~ is any integer; and x = (x, y) . The discrete analysis begins 

by considering the discrete velocity vector, U = {U i, j} where i = 1, ... , N, j = 1, ... , N and N is 

even. The velocity can be expanded in discrete Fourier modes, 

(1)j = (1)k (jh) = ei(k. J) h, (3.35) 

where k = (kI' k2) and ki = - ~ + I, ... t ~; j = (jl'j2) 11 ji = 0, ... , N -1; and 

Ax = Ay = h = 2x/N. 1b.e set of Fourier modes is orthonormal on [0, 2x] . The discrete 

transform of the velocity is 

(3.36) 

where U J = (u J' v j) are the coefficients in the expansion. 

Fourier transforms are useful for examining the stability of operators because discrete Fourier 

modes are the eigenvectors of shift operators, the basic building blocks of finite difference opera­

tors. The shift operators S;, S~, S;, S; are defined by 

(S:u) i,j = {ui + I,j} , 

(S~u)i,j= {ui - 1•j}, 

(S; v) if j = {Vi, j + I} • 

(S; v) i.j = {Vi• j _ I} . 

(3.37) 

All linear finite difference operators can be expressed as linear combinations of these shifts. Thk­

ing the discrete Fourier transform of equations (3.37) gives 
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S+mk=m~ . =e"'thmk. 
x 1 Jl+l.h J 
- It It -tk1h It 

SxCllJ = mjl -l.il = e CDJ ' 

s+ It _ It _ ~h It 
Y CIlJ - CJ)jlljz+ 1 - e OOJ' 

(3.38) 

- It It -ik2h k 
SyCDJ = Q)jll i2 - 1 = e CDJ . 

Therefore, if V = L U, where L is a constant coefficient finite difference operator, then taking the 

Fourier transfonn of V is the same as multiplying 0 by an amplification factor, or symbol, com-

sed f lin b" f ik1h -tk1h ~h and -tk1h (Fa =_&: . F po 0 a ear com mation 0 e ,e ,e e. r more uuormabon on ou-

rier analysis, see Strikwerda [62].) 

To begin the stability analysis of the approximate projection operator, consider the discrete 

centered difference divergence operator, Do- which is given by 

x x 
(

S+ - S· 

Do = 2h 
s+ -S- J y y 

2h . 

The symbol of Do. 00. can be expressed as 

where 

and 

.1r- h _.1r- h 
~y _ e~ -e ~ 
00 - 2h . 

Likewise, the discrete centered difference gradient. GOt can be given by 

_ (s: -S~) / (2h) J 
Go - . 

(S; - S~) / (2h) 

The symbol of Go. Go. can be expressed 
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(3.40) 

(3.41) 

(3.42) 

(3.43) 



(3.44) 

Given these definitions. it is possible to define the symbol of a projection operator. For exam­

ple. consider the operators Qo = Go (DoGO)-lDo and Po = 1- Qo. The operator Po is the 

discrete projection operator based on centered difference operators, and it satisfies the relationship 

P~ = Po Since the boundary conditions are doubly periodic. operators commute and Qo can be 

written 

Q o = {DoOo> -1°00 0. (3.45) 

The symbol of QOt Qo, is given by 

(3.46) 

and satisfies 

(3.47) 

where b = (bI , b2) . Specifically, 0 (k) is a (2 x 2) mauix which depends on k with eigenvalues 

~ro and one. By combining equations (3.46) and (3.47), it is not difficult to show that II Qoll S 1 

and that II I - Qoll S 1. 

The same analysis can be applied to Q = Go (L\h) -lDo ' where P = 1-Q represents an 

approximate projection. Since operators commute for the doubly periodic case, Q can be written 

(3.48) 

where l\h is the five point Laplacian defined in equation (3.14). The symbol ofQ. Q. is given by 

(Ah) -](;000 or 

(3.49) 

where 
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(3.50) 

A "'X 2 .. y 2 A ... 

If LO (k) is defined as (00) + (°0) • then the relationship between Q and Qo is 

(3.51) 

This relationship can be used to bound Q. where 

(3.52) 

For Q to be stable. the eigenvalues of 0 (k) must be between zero and. one. Since the eigenvalues 

of Qo (k) are zero and one. for Q to be stable. then P = Lo (k) / (i. (k» must satisfy 

(3.53) 

To evaluate P t substitute the expressions for 3~ t 3~ and to (k) in to the definition of p. The 

result is: 

COS 
2 (k1h) +COS2(~h)-2 

P = 2eas (k1h) + leas (~h) - 4' 
(3.54) 

which varies between 0 and I. Thus. equation (3.53) is satisfied and the approximate projection is 

a stable operator where the eigenvalues of Q (k) are zero and p, and the eigenvalues of 1-Q (k) 

are 1 and I-p. 

Fourier analysis can also be used to show the accuracy of the approximate projection operator. 

Let pH denote the continuous projection operator defined in equations (2.29) - (2.39) and let P 

denote an approximate projection operatot If u (x) is a smooth function and uf = u (jh) repre­

sents that function evaluated at grid points, then P is accurate of order p if 

(PEu) (jh) - <Puh) J = 0 (hP) • 

If v = bwk (x) • then for each fixed k, 

(3.55) 

(3.56) 

as h --. 0 is a necessary and sufficient condition for P to be a second-order accurate operator. 

We will now show that equation (3.56) holds. Let 0. denote the Fourier transfonn of u. The 

spatial derivatives of 0 are: 
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A .1#'" 
Ux = 1&.1 U, 

0xx = -krn, 
cay = Uc20, 

Oyy = -k~(i. 

Let q denote the symbol of I - pE. Then q can be expressed as 

q (k) = 21 2 ( -ki 
-k1 -k2 -kt k2 

where - ki - k~ is the symbol of the exact Laplacian. 

(3.57) 

(3.58) 

If the symool of the discrete five point Laplacian is expanded in a Thylor series, the result is 

Likewise, the definitions of 8~ and Ob can also be expanded in a Taylor series to yield 

2&1 h + 0 (h3) 
00 = 2h = &1 +O(h

2
) 

and 

(3.60) 

(3.61) 

Equations (3.59) - (3.61) and equation (3.49) can be combined to show the order of the difference 

between the continuous and discrete operators: 

(3.62) 

and, thus. that the approximate projection is a second-order accurate approximation to the continu-

ous operator. 

3.5 Filtering 

Some care must be taken in using the approximate projection operator because the centered 

difference approximations used for 0 and G allow a non-physical oscillatory mode to persist. This 

mode, pictured in Figure 3.1, interacts badly with both the discretization of the advective tenns 

(U . V) U and with the volume sources that occur in the combustion case. The mode can be 

40 



removed by applying an additional projection operator to the "projected*' field which has a differ­

ent spatial discretization. If the second projection does not use a centered difference divergence • 

... .. 

Figure 3.1 Divergent mode left in by the MAC/centered difference projection 

this mode is removed. 

Although applying a second projection is perfectly feasible, it is expensive computationally. A 

second solution. the one used in this thesis, is to create a filter which can eliminate the remaining 

mode. The filter consists of a single point-Jacobi iteration and is constructed using operators 

designed to catch a two-dimensional version of the mode. This two-dimensional mode is pictured 

in Figure 3.2. 

Figure 3.2 Two-dimensional mode removed by the filter 

The operators used in the point-Jacobi iteration are denoted by a "dt
' superscript, which stands 

for Udiagonal." The diagonal divergence. J)d, is defined at cen nodes and uses variables at cell cen­

ters and is given by 
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(3.63) 
(v .. +v. l')-(V" l+V. 1'1) 

+ 
to] 1- oJ I,J- 1- .j-

2A-y . 

The corresponding gradient is defined at cell centers using scalars defined at cell nodes and is 

given by 

d x _ [(fPi+1/2.j+I/2+4pi+1/2,j-1/2) - ( fPi-l/2,j+1/2+<Pi-l/2,j-1/2) ] 
(G 4p)~j- 2A-x 

(3.64) 
d Y _ [(<Pi+lJ2.j+l/2+CPi-l/2,j+l/2) - (CPi+l/2,j-1/2+<Pi - 1/2,j-1/2)] 

(G ~)~j- 2A-y . 

To filter a vector field, V, the following steps are performed: 

1. Compute ndv and initialize cp to zero. 

2. Relax once on V using 

(3.65) 

A. is a relaxation parameter chosen to provide maximal damping in the point-Jacobi iteration for 
<Jih) 2 

h2 
the diagonal Laplacian ndGd. For example, if A-x = A-y = h. then A. = 8 = -4' 

3. Replace V by 9(V) 

d V := 'j(V) = V -0 cpo (3.66) 

Applying the filter is sufficient to suppress the high wave number mode described above. 

Effectively. the filter behaves as an additional second-order accurate projection which is based on 

the divergence-gradient pair nd and ad. It is expected that second-order accuracy should be 

maintained when applying the filter, and. in fact. second-order accuracy is observed in the numeri a 

cal convergence srudy in Chapter 4. 

Note that filtering is not used to maintain the stability of the projection. The mode removed is, 

technically. a divergence-free mode. and therefore. if left in, would not cause the scheme to 

become unstable. The mode is removed only because it is non-physical, an artifact of the centered 

difference divergence operator. 

Fourier analysis can be used to show that the filter is accurate for the case of doubly periodic 

boundary conditions. If vector field V = {Vi,j} where i = It ... , N,j = 1, ... , N is expanded in 
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the discrete Fourier modes defined in equation (3.35), the discrete transfonn of V can be written 

(3.67) 

The stability and accuracy of the filter can be demonstrated. The analysis begins with the 

observation that 

(3.68) 
.. ..dAd -l .. d .. d . 

is a projection operator with the symbol 1 - (D u) aD. The elgenvalues of the symbol 

are zero and onc. The filter can be expressed by 

(3.69) 

or 

(3.70) 

The operator in equation (3.70) is very similar to the projection operator in equation (3.68) with an 

extra factor of P = A./ (DdOd) -1. By comparing the two operators, it is easy to see that the 

eigenvalues of the symbol of the operator in equation (3.70) are zero and ~. Thus, if it is possible 

to show that 0 ~ PSI, then that is equivalent to showing that the filter is a stable operator. 

and 

Using the shift operators defined in equation (3.37), Od and ad are given by 

d _ (I + S;> (I - S;) 
D - 2h 

(I+S;) (I-S;» 
2h 

[ 

(I + S;> (S~ -I) 

ad = 2h .. 
(I + S~) (S~ - I) 

2h 

Let fid and Od be the symbols of Od and ad, respectively. ode;d can be expressed 
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(3.72) 



(3.73) 

which reduces to 

(3.74) 

Therefore. 

~ SOdOd SO• (3.75) 
h 

2 
Since A. t the relaxation parameter in the filter. is selected to be -: t then 0 S P s; 1 and the filter is 

a stable operator. 

Taylor series extrapolation can be used to show the order of accuracy of the filter. If 

uf = u (jh) represents a smooth divergence-free field evaluated at grid points, and ~(uh) - uh 

is extrapolated, the result is 

(3.76) 

Thus, the filter acting on a divetgence-free velocity field adds an 0 (h4) correction to that field. 

3.6 Algorithm for the Non-Reacting Case 

A fractional step method based on Bell, el aI. in [6], [7] and [91 is used to solve the Navier· 

Stokes equations for variable density in a closed container. The equations that describe this flow 

are given by 

Du 
p- = - V7t + J.1L1u 

Dt 

Dp = 0 
Dt .. 

V·u = o. 

u· nlan = 0, (3.77) 

(3.78) 

(3.79) 

un = (uD
, vD

) represents the discrete velocity field and pn approximates density on the 

finite difference grid at the beginning of time step D. ltn - 112 represents the discrete pressure and 

is centered in time at the half step. at time tn 
- ~t. All discrete variables are defined at cell centers 
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where qi,j = q (i~x,jl\y). 

The basic structure of the algorithm remains similar to that in Bell, Colella, and Glaz [6J, but 

several additional steps are required to treat the variable density. The approximate projection 

described above is also used. The algorithm can be outlined as follows: 

1. Compute [(U· V) U] n+ 1/2 and [(U· V) p] n+ III t estimates to the advective deriva-

. red·..n At . God ........... byeS cente at time L + T' uslng a unov meulUU. 

2. Solve a discrete fonn of the continuity equation (3.78) to obtain pn + 1. 

3. Solve a discrete fonn of the momentum equation (3.77) to find tr. an intennediate velocity 

field. 

4. Apply the projection to U· to split U· into a divergence·free and a gradient component. Use 

the gradient component to update the pressure gradient. V ltD + 1/2 t and use the divergence· 

free component to find Un + 1 • 

5. Apply the filter to the velocity. UD + 1 fa- !'F(UD + 1) . 

3.6.1 Time Stepping Strategy 

In this section the details involved in steps 2. 3 and 4 of the outline are discussed. It is assumed 

that UD, pD and GltD - 1/2, discrete approximations to velocity. density, and pressure gradient that 

satisfy the boundary conditions and governing equations. are known. The solutions can be 

advanced in time by solving second-onier accurate discretizations of equations (3.77) and (3.78) 

given by 

U· = uD+l\t(-[(U.V)U1D+1/l- 1 G1tn-1/2+ J.I. Ah(U· +u
n
» (3.80) 

pn+ 1/2 pD+ 1/2 2 

and 

(3.81) 

U·, the intennediate velocity field obtained by solving equation (3.80), satisfies the same boundary 

conditions as U. and ~h, the viscous operator in equation (3.80). is the discretization of Laplacian 

in equation (3.14). pn + 1/2 is determined by averaging pD and pn + 1. and the advective flux 

tenns are evaluated to second.order accuracy by a Godunov procedure. (1bis procedure will be 

described in the next section.) 
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Because of the lagged pressure gradient in equation (3.80), U· is not second-order accurate in 

time. To achieve second-order accuracy, an updated pressure gradient is required which satisfies 

the relationship 

Un+1 = un+l\t(-[(u. V)U]n+1/2_ 1 Gxn + 1/2 + J.L &h (u· +u
n

»).(3.82) 
pD+ 1/2 pn+ 1/2 2 

This updated pressure gradient can be found by solving the Poisson equation 

Lh1tn+ 1/2 = D (u* -Un + 1 G2tn - 1/2) (3.83) 
p 0 &t pD+ 1/2 

where L~ is the difference approximation defined in equation (3.14) with coefficients 

p = pn + 1/2. Given a solution to equation (3.83). it is possible to calculate the velocity update by 

using 

(3.84) 

Equation (3.83) is a consistent discretization of equation (2.39). In equation (2.39), the solution is 

required to the equation 

1 ~ V . - Vlt = V . (- (u . V) u + -l\u) . 
P P 

(3.85) 

If the advective and viscous terms in the right hand side of equation (3.85) are replaced by the def­

inition of U·, then this equation discretely reduces to equation (3.83). 

Alternately, an incremental pressure fonnulation can be used to find the updated pressure gra­

dient. TIlis formulation involves solving a Poisson equation for the increment in the pressure, 

o = ltD + 1/2 - ltn - 1/2. nus alternate Poisson equation is given by 

(3.86) 

where L~ is. again, the difference approximation defined in equation (3.14) with coefficients 

p = pn + 1/2. Once equation (3.86) has been solved for O. it is possible to solve for the velocity 

update by subtracting the gradient of the pressure increment from If' f 
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un + 1 = u· _ 1 G li. 
pn+1/2 0 

(3.87) 

Equation (3.86) is a consistent discretization of equation (2.39), In equation (2.39), the solution is 

required to the equation 

1 J1 1 G V· -Vli = V· (- (u· V)u+ -~u--Vx ) p p p 
(3.88) 

If the advective and viscous terms in the right hand side of equation (3.88) are replaced by the def­

inition of U-, then this equation discretely reduced to equation (3.86), 

The incremental pressure projection formulation.provides an alternate method of updating the 

velocity and the pressure. For example. in the constant density inviscid case. updates can be found 

by either of the following two formulations: 

• n Un+ 1 = Un+AtP(U - U ) 
At ' (3.89) 

• n 
Gxn + 1/2 = Gxn - I / 2 + (1_ P) (U ;tU ), 

or 

• n Un + 1 =Un +AtP(U -U) 
At ' (3.90) 

• n Gltn+ 1/2 = (1_ P) (U - U ) 
At . 

If p2 = P t these two methods would give identical results. However, for the approximate projec­

tion operator where p2 ~ P, the two methods differ. 

3.6.2 The Treatment of the Nonlinear Terms 

This section describes the Godunov method used to calculate the time-centered nonlinear flux 

terms used in equations (3.80) and (3.81). The method is similar to the one used by Bell, et al. (9] 

which is conservative and second-order accurate. It can be broken down as follows: 

1. Extrapolate along characteristics to construct time-centered left and right states, 

(U,p)n+1/2,L and (U,p)n+l/2,R, 
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2. Find the upwind direction at each edge to select Un + 1/2, pn + 112 t single values from the 

left and right state. 

3. Difference the left and right states tenns to find the advective terms, [(U· V) U1 n + 1/2 

and [(U· V) p] n + 1/2. The terms are calculated with centered differences. and are given by 

Un + 1/2 Un+ 1/2 ) 
U U - 1 ( n + 112 n + 112 ) ( i + 112, j - i - 1/2, j 

u x + V Y - '2 Ui + 112, j + Ui - 1/2, j .A x 

(Un+ 1/2 Un+ 1/2 ) 
1 ( n+ 1/2 n+ 1/2 ) i,j + 1/2 - i,j-1/2 

+ '2 vi+ 1/2,j +v i - 1/2,j Ay 

(3.91) 

and 

(3.92) 

Various specialized Godunov schemes can be developed by refining any of these steps (for 

example. as in Bell, Dawson and Shubin [8].) 

Since the Godunov scheme is explicit, a Courant·Friedrichs-Lewy (CfL) condition must be 

satisfied on the time step to insure stability. This constraint is based on the advective velocity only 

and is given by 

(
Ax .. Ay. ') At < . l,j 1, J 

~ - 0' mIn 'u~ -I' Iv~ ., ' 
1,J 1.) 

(3.93) 

as!. 

This constraint dictates the size of the time increment for the entire scheme. a is known as the 

CFLnumber. 

Extrapolation 

1be first step of the Godunov method involves extl'alX>lating along characteristics to find val­

ues of the density and the velocity on the mesh at time tn + 1/2. A simple second-order accurate 

Taylor series is used to perform the extrapolation. Given below are the expressions at the left cell 

edge, i + 1/2, j t extrapolated from cell ij: 
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n + 1/2, L _ n A x n 4 t n 
Vi + 1/2,j - Ui. j + TUx. ij + T u~ ij' (3.94) 

n+l/2,L _ n Ax n At n 
Pi + 1/2,j - P~j + TPx• ij + TP~ if (3.95) 

The x subscript denotes differentiation with respect to the x-direction and the t subscript denotes 

differentiation with respect to time. 1be expressions for the density and the velocity at the same 

edge extrapolated from cell i+ 1 j are 

(3.96) 

(3.97) 

The temponl derivatives in equations (3.94) - (3.97) can be replaced by substiwting in the dif­

ferential equation. After doing so, these equations can be expressed as 

n + 1/2 L n A x At U. 1/2'· =U·.+ (--u .. -)U .. 
1 + d l,j 2 1, J 2 x. IJ 

At( ~ hi) -- (vU) .. -- (a U)· .+-(G1t)i . t 2 Y I,J p. . ltJ p.. d 
ltJ 101 

(3.98) 

(3.99) 

and 

(3.100) 

n + 112, R _ n A x A tAt 
P i + l/2,j - Pi+l.j-(T+Ui+l,jT)P1,i+ltj-T(vPY)i+ltj (3.101) 

Spatial derivatives are evaluated by centered difference approximations in the nonnal (x) 

direction and upwind differences in the transverse (y) direction. In addition, the pressure gradient 

is omitted in equations (3.98) and (3.100) and corrected for later. Given these substitutions. equa­

tions (3.98) - (3.101) can be written 
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n + 112, L n 1 A tAt ( [U] L j f.L h ) 3 02 U. 1/2' =U· .+(--max(u· .,O)-)OU .. -- v-· --(A U)ij' ,(.1 ) 
1+ d 1,) 2 1.) 2Ax X,IJ 2 1,J Ay p.. • 

t.J 

(3.103) 

(3.104) 

n + 1/2, R _ n (1 . ( '0) At) ~ L\ t [ ] Y (3 105) 
Pi+l/2,j -Pi + 1•j + -2- m1n ui+1,j' 2Ax uPx,i+l,j-T vi+l.j P i+l,f . 

oU .. and op .. t nonnal spatial differences in equations (3.102) - (3.105), denote the limited x, IJ X,IJ 

fourth-order accurate finite difference approximations to the derivatives in the normal direction. 

They are calculated in the x-direction, for example. by 

(8Xq) .. = sign(q. l' -q. -1 .) X 
Id 1+ d I oj 

min[l~ (q; + l,i - qi - I,i) - ~ « Ilfq) i+ I,r (Ilfq) i -I, i) I, (Illimq) i,i] 
(3.106) 

(Ofq) .. =min(2Iq· l·- q· 1 ,1, (Olimq) .. ) xsign(q. 1 ·-q·-l·) 
1,j 1+.j 1- d 1.j 1+,J 1 d 

if (q. 1 .-q .. ) (q .. -q. 1') >0 
1+ d I,J I.,J 1-.j 

otherwise 

where q = (u, v, p) . 

[U] ~ . and [p] r ., nonna! spatial differences in equations (3.102) - (3.105), denote the 
I,) 101 

upwind slopes used to obtain the spatial derivatives in the transverse direction. They are calculated 

by 

(

U .. -U .. 1 
[U] Y . = t. J I,) -

t.J U·· 1-U· . t.J+ I.,J 

for the velocity and 

if (v .. > 0) 
1,J 

if (v .. S 0) 
l.j 

if (vi.j > 0) 

if (vi. j S; 0) 

(3.107) 

(3.108) 

for the density. Viscous te11llS are calculated using the five point Laplacian in equation (3.14). 

To evaluate the viscous tenns and limited slopes near the boundary, rows of ughost cells" are 
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created around the domain and filled with values as indicated by the boundary conditions. More 

precisely. if within the domain there are cells labelled (ij) where i = 1 •...• ox and j = 1, ... , ny. ghost 

cells (OJ) and (nx+l.j) wherej = 0 •...• ny+l and cells (i.O) and (i,ny+l) where i = 0, ...• nx+l are 

specified. These cells are used. for example. to find the five point Laplacian at cell (1 t I). which 

requires ghost cells (0,1) and (1 to). 

Ghost Cells 

Domain Interior 

............................................................................. ............................................................................ 

Figure 3.3 Location of ghost cells 

For inviscid problems, homogeneous Dirichlet boundary conditions are enforced on the nor­

mal component of velocity. and polynomial extrapolation is used to fill ghost cens with the tangen­

tial component of velocity. For example. in evaluating (U] rj and SlUijt set ghost cells in the first 

row of exterior cells with 

Uo . = -u1 " 
d d (3.109) 

vi. 0 = -vi. I' 

and 

Vo . = 3 (VI ,- v., ,) + v3 " 
d oj -.J .J 

u· 0 = 3(u. l- U' 2) +u· 3" I, 1. 1, l, 

etc. To compute the nonnal spatial derivatives for the velocity at cells adjacent to the boundary on 

the domain interior, oXUij is set to OfUijt as defined in equation (3.106). 

To evaluate viscous tenns and compute A.h, the no-slip condition is enforced on both the nor· 

mal and tangential components of velocity. Thus, ghost cells are filled by 
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Uo ,= -U1 " 
oj .j (3.111) 

Vo . = -vI ', . 
.j d 

etc. Spatial derivatives for density adjacent to the boundary in both the nonnal and transverse 

directions, [p] Lj and aXpij' are computed using second-order polynomial extrapolation. Ghost 

cells are filled, for exampJe, on the left by 

Po . = 3 (Pl' - P2,') + P3 ., ,J d J d 

p. 0 = 3 (p. 1 - p. 2) + p. 3' 
I, I. I. 1. 

(3.112) 

Upwinding 

The next step in the Godunov method is to resolve the ambiguity at cell edges by selecting one 

of the two extrapolated values. Recall that at eacb cell edge, two values have been extrapolated. as 

illustrated for edge i+ 112. j in Figure 3.3. 

A single value is selected between the left and right states by solving a Riemann problem. 

~~Ia 
x ~L-________ ~ ____ ~ _______________ ~ 

iJ i+l12J i+lJ 

Figure 3.4 Predicted value extrapolation for the Godunov predictor 

Mathematically. the solution to a Riemann problem is found by detennining which characteristics 

cross the path at the point of interest. Data are chosen which comes from the upwind side and 

downwind data are discarded. 

The upwind solution is shown here for the nonnal velocity at the right edge of cell ij where a 

single state is selected by 
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u!'.+u!' . 
if 1.) 2 1+ 1.1 c:: 0 

(3.113) 
otherwise. 

The normal component of the velocity is then used to detennine the tangential component of the 

velocity and the upwinded density by 

and 

p. 1/2' = 1+ oj 

if ui + 112. j > 0 

if U i + 1/2.j < 0 

if ui + 1/2.j= 0 

if ui + 112. j > 0 

if ui + 1/2. j < 0 

if ui + 1/2.J= 0 . 

(3.114) 

(3.115) 

Boundary conditions are easily enforced on these predicted velocities, Un + 112 I since they lie 

on the mesh. The nonnal components on the ooundary are set using Dirichlet ooundary conditions, 

and the tangential components on the boundary are set using second-order polynomial extrapola­

tion. 

After the upwinding is complete. the predicted densities are used to construct the time-cen .. 

tered nonlinear terms. [(U· V) p] n + 1/2 t described in equation (3.92). 

3.6.3 Pressure Correction 

Before calculating the advective tenns for the velocity, a pressure correction step is perfonned 

to estimate fOT the effect of the omiued pressure tenn, ~; V It. "The purpose of the V It tenn is to 

ensure that the divergence constraint is satisfied to the appropriate order in time. In Bell. Colella 

and Glaz [6]. V1t was approximated by the lagged pressure gradient, Vxn -1/2, but it was 

observed by Bell, Colella and Howell [71 that using the lagged pressure gradient in the extrapola­

tion resulted in a non-linear instability for CFL numbers greater than 0.5. The constraint is 

enforced by perfonning an additional MAC .. type projection designed to return a stable approxima­

tion to V x for CFL numbers up to one. The corrected pressure gradient satisfies the relationship 
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:;V1t = (I_pMAc) Un + 1I2. 

In detai19 this MAC-projection is perfonned by first solving the Poisson equation 

Lhm - OMU pT -

(3.116) 

(3.117) 

where L~ is defined as in equation (3.14) using p = pn. and oM, the MAC divergence. is given by 

(3.118) 

No-nonnal flow boundary conditions are enforced for OM by specifying the nonnal velocity com­

ponents on the boundary. as in 

Ul/2,j = Vi. 1/2 = Unx + 1/2.j = vi• nY + 1/2 = O. (3.119) 

Equation (3.117) is solved with homogeneous Neumann boundary conditions applied in the same 

manner as discussed in section 3.3. 

Given a solution to equation (3.117). the MAC gradient of the scalar field. G~4p, is con­

structed by 

(3.120) 

where p = pn. The values of the density on the mesh are obtained by averaging as in equation 

(3.15). G~ canies homogeneous Neumann boundary conditions which are enforced by setting 

ghost cell values for 4p by 

(3.121) 
4p. 0 = 4p. 1 1, 1. 

etc. Given G~4pt the predicted velocities are corrected by subtracting off this pressure gradient. 

That is, 

un + 1/2 "_ Un+ 1/2 (GM ) x 
i + 1/2, j'- i + 112, j - P 4p i + 112, j' 

Un + 1/2 ,_ Un + 1/2 (GM) y 
i.j+1/2·- i,j+1/2- p 4p i.j+1/2' 

(3.122) 

This fonnulation is consistent with the overall accuracy of the method since it is only required 
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to estimate the predicted values of the velocity to 0 (At2) • An additional order of accuracy is 

gained in the corrector step. It is for this same reason that it is sufficient to use explicit viscous 

!enns in the predictor. They too are only 0 (A(2) f but an additional order of at is gained in the 

correctoT. 

The stability and accuracy of the algorithm for the non-reacting case is difficult to detennine 

for two reasons: the problem is non-linear. and the scheme is non-linear. Stability can be proven. 

however, for the linearized Euler equations for constant density, 

au 
dt + (uo . V) u = -V1t~ (3.123) 

V· U:: 0. 

where DO is a constant. For these equations, a scheme can be written 

(3.124) 

where 

(3.125) 

is a linear finite difference approximation to (DO' V) u. If II A (V) II S; KII VII where K is a con­

stant. then 

Ilun + 111 S (1 + KAt) II unll (3.126) 

since II PII s 1. 

3.7 Algorithm for the Reacting Case 

It is possible to extend the approach that was implemented for the non-reacting case and apply 

it to solving the system of equations for reacting flow discussed in the previous chaplet The most 

significant design change occurs in enfOrcing the divergence constraint. For incompressible flow. 

the velocity is divergence-free and an approximate projection is used to insure that the updated 

velocity met this homogeneous constraint. In the case of reacting flow, the velocity divergence is 

nOD-zero, and so the algorithm must be modified to account for this inhomogeneous constraint. 

Once again. the equations for low Mach number combustion in a closed container are 

conservation of momentum: 
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Du 1 J.l 
- = --Vrc+-Au 
Dt p P u· nlan = 0 • 

conservation of energy: 

DT d-
pc - = ~+lC.AT+qokpz 

PDt dt ~lilQ = o. 

conservation of species: 

DZ 
p- = 1)(V·pVZ)-kpZ 

Dt 

ideal gas equation of state: 

mean pressure equation: 

~!liIn = O. 

dp _ (y-l) r 
dt - vol (0) 11 (qokpZ + 1C4 T) dO, 

divergence constraint on the velocity: 

1 d­
V· u = S = -= (- dP + (y-I) (QokpZ+ 1C.d T». yp t 

(3.127) 

(3.128) 

(3.129) 

(3.130) 

(3.131) 

(3.132) 

The discrete variables are defined as follows: Un = (un. VD) is the velocity field, pn is the 

density. Tn is the temperature, pta is the bulk thennodynamic pressure which varies in time only. 

ZD is the mass fraction. kD is the reaction rate, and 

D 1 ..tJ1 h n 
S = -=n [- p + (y-I) (qokpZ+ lC.A T) ] 

yp 
(3.133) 

denotes the volume sources. All the above variables are defined on the finite difference grid at the 
At 

beginning of time step n. ren - 1/2 is the discrete pressure and is centered in time at tn 
- 2"' All 

the variables q = U, re, p, T. Z, and k are defined at cell centers, (i,j), where 

qi,j == q «i - 1/2) Ax, (j - 1/2) Ay). 

The general procedure will remain the same as for the non-reacting case. with similar time­

stepping strategy and treaunent of the nonlinear terms. Note that the continuity equation is no 

longer solved explicitly for density. Instead, the temperature and the mean pressure are calculated 

through the conservation of energy equation (3.128) and the mean pressure evolution equation 
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(3.131) and then. in tum. the density is updated through the equation of state (3.130). 

In outline fonn. the reacting algorithm consists of the following steps: 

A. Velocity Predictor 

Perform a Godunov procedure to find the advective tenns for the velocity. 

[ (U . V) UJ n + 1/2. TIle divergence constraint is enforced on the predicted velocities, 

Un + 1/ 2 . 

B. Scalar Predictor 

Perfonn a Godunov procedure to find the advective terms for the temperature and the mass 

fraction, [(U· V) T] n+ 1/2 and [(U· V) Z1 n+ 1/2, Estimate the temperature, the mean 

pressure and the density at tn + 1/2. 

C. Scalar Update 

1. Solve a second-order accurate Crank-Nicolson discretization for the updated mass frac­

tion, Zn + 1 • The discretization is given by 

[ 
1 Zn + 1 + Zn Zn + 1 + Zn ] 

Zn + 1 = Zn + 4t _ [ (u . V) Z] n + 1/2 + -1>L h ( ) - kp ( ) 
P 'D 2 2 

(3.134) 

where L~ is a suitable discretization of the species diffusion operator in equation (3.129). 

Zn+ 1/2 is obtained by averaging Zn and Zn+ 1. 

2. Estimate the temporal derivative of the bulk thennodynamic pressure, P t and solve a 

second-order accurate Crank·Nicolson discretization for the updated temperature. 

Tn + 1 . The discretization is given by 

Tn + 1 = Tn + t\t [_ [ (u . V) T] n + 1/2] 

4t Tn+1+Tn 
+_1Ct\h( ) +p+q kpZn+ 1/2, 
p~ 2 0 

(3.135) 

Average Tn and Tn + Ito find T'+ 1/2, 

3. Correct estimates for p + 1/2 and pn + 1/2. Calculate the volume sources, Sn + 1 . 

D. Velocity and Pressure Gradient Update 

1. Solve a second-order accurate Crank-Nicolson discretization of the momentum equa­

tion for the intermediate velocity field, U·. The discretization is given by 
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This step in analogous to advancing the solution in the non-reacting case as described in 

equation (3.80). 

2. Enforce the divergence constraint. Find the incremental pressure gradient, GOO' and 

update G1t. Apply the filter to the divergence-free component of the velocity. 

3.7.1 Velocity Predictor 

For the most part. the velocity predictor is'the same as in the non-reacting case. The only dif­

ference is in the pressure correction step which insures that the divergence constraint is satisfied to 

the appropriate order in time. Recall that in the non-reacting case. a MAC-type projection was per­

formed to calculate an estimate for the pressure tenn that had been omitted in the extrapolation 

step,. ~; V It. For the reacting case, the MAC-projection is modified to account for the non-zero 

divergence of the predicted velocities. UD + 1/2. 

In detail. the pressure correction step for the reacting case is peJformed by first solving the 

Poisson equation 

(3.137) 

where L~ is the discretization of Lp as defined in equation (3.14) and OM is the MAC-divergence 

defined in equation (3.118). SD. the volume source tenn defined in equation (3.133). is calculated 

using the following estimate for pD: 

..:.D _ (1 - 1) ~ ( k Z .... A T) n 
p - vol(Q)~ qo P +~ . 

I,J 

(3.138) 

Equation (3.137) is solved using homogeneous boundary conditions for L~ and no-nonnal 

How boundary conditions for OM. TIley are applied in the same manner as they were for the non­

reacting case. Given the solution for equation (3.137), the MAC-gradient of the scalar field, G~cp, 

is calculated and the predicted velocities are corrected using equation (3.122). 

3.7.2 Scalar Predictor and Update 

In this section, the fractional step method used to find scalar updates is discussed in more 
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detail. The approach will be similar to the approach in the non-reacting case where the solutions 

were advanced in time by solving second-order accurate discretizations of the governing equa­

tions. The implementation. however, is more complicated in the reacting case due to the presence 

of source tenns associated with combustion. 

1be goal of the scalar predictor is to estimate nonlinear flux tenns and reaction source lenns. 

Nonlinear tenns are evaluated using a Godunov procedure. TIle Godunov method used to evaluate 

the nonlinear terms for temperature is very similar to that described for density in the non-reacting 

case. The only difference between the two Godunov methods is that diffusion tenns for tempera­

ture must be calculated for the predictor. These tenos are approximated by a standard five-point 

discretization to which homogenous Neumann boundary conditions are applied. 

In addition. a slightly different version of the Godunov method must be used in calculating the 

advective terms for mass fraction. It was observed that using the unmodified Godunov procedure 

introduces a mild non-linear instability for CFL numbers greater than about 0.5 in the reacting 

flow case. Using the following alternative version of the extrapolation step alleviates the problem. 

First calculate auxiliary field. Z. by 

- At-1: h 
Z = z+ (-2-) (!DL;,z-knZ) (3.139) 

where't = min (ph2 /8!D, At) and L~ is a discrete approximation to V· (pVZ) and is given 

by 

L~ = Pi+ 1I2.j (Zi + l.j - Z~j) -Pi-lI2.j (Z~j - Zi-l} 

Ax2 

p .. 1/2(Z" l- Z .. )-p .. 1/2(Z . . -Z .. 1) + ltJ+ I.J+ I.] I,J- l,J I.J-
4y2 . 

(3.140) 

1be P coefficients in the expression above are obtained by averaging pn as in equation (3.15). 

Next, a second auxiliary field. Z, is calculated by 

(3.141) 

This second auxiliary field is used to extrapolate to cell edges at time t ft + 1/2 with a Taylor series 
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n + 112 L ;;n ] A t L\ t y 
Z. + II'" to = Z;J' + (-2 - u· ._) SZ .. -- [vZ]. " 

1 .... J.. 1. J 2Ax X, 1J 2 '* J 
(3.142) 

Essentially. this modified algorithm smooths the source tenns that come from the chemical 

reaction by perfonning a single point·Jacobi iteration. 1be smoothing is consistent with the gov­

erning differential equation and introduces no loss of accuracy. 

The algorithm continues with the estimation of the time-centered reaction source terms. To 

find these, we use the temporal derivative of mean pressure, P t which has been previously calcu­

lated in equation (3.138) to get an approximation to pn+ 1/2 given by 

pn+1/2 = ptt+Atp. (3.143) 

Next, an approximation to Tn + 1/2. T f is estimated by the Taylor series 

(3.144) 

The temporal derivative in equation (3.144) is eliminated by substiruting the energy conservation 

equation 

T = Til + ~t[_[ (U· V)T]n+ 1/2+ p~cp (d b.rn+p"+ (qokpZ)II) J (3.145) 

T and pn + 112 are used to find an estimate for density at tn + 1/2. P f through the equation of state. 

P is expressed as 

_ p=n+ 1/2 
p = - (3.146) 

RT 
- -T is also used to find an approximation for the time-centered reaction rate. k, given by 

-
k- - A -E/(RT) - e . (3.147) 

The scalar correction step is now perfonned to find updates for the temperature, the mass frac­

tion. the density and the mean pressure. The previous estimate of the reaction source term and 

mean pressure derivative is also corrected. 

The correction step begins by solving equation (3.134). a second-order accurate Crank-Nicol­

son discretization of the species conservation equation to find the mass fraction update, Zn + 1 • In 

the discretization, all the. values of p, including those coefficients of L~ defined in equation 

(3.140). are given by averaging P. the de~ity defined in equation (3. 146)t as in equation (3.1S). k 
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-is given by k. the reaction rate defined in equation (3.147) Homogeneous Neumann boWldary con-

ditions are enforced by setting ghost cell values by extension. for example. 

7~ . = Zt . 
-o,J oj 

Z· 0 = Z. 1 I, ... 

etc. Next. mass fraction is averaged to find the value at r' + 1/2. 

Zo+1 ZO 
Zn+ 1/2 = +. 

2 

(3.148) 

(3.149) 

The mass fraction update is next used to solve the second-order accurate discretization of the 

energy conservation equation for ~+ lit equation (3.135). In this discretization, p = p. the den­

sity defined in equation (3.146) and k = k, the reaction rate defined in equation (3.147). Ah is the 

five-point discretization of Laplacian defined in equation (3.14). Homogeneous Neumann bound­

ary conditions are enforced as they are for Z. by setting ghost cell values by extension. as in 

TO . =T1 . 
d oJ 

T. o=T. 1 
1. ... 

etc. Again, temperature at the old and new times is averaged to determine Tn + 112 t 

TD+l ~ 
T"+ 1/2 = + I • 

2 

(3.150) 

(3.151) 

The corrector step continues by recalculating reaction source terms and the temporal deriva­

tive of the mean pressure. First, reaction rates are determined at time tn + 1/2 with the expression 

n + 1/2 -£1 (Rr· 1/2) 
Ie. = Ae . (3.152) 

The reaction rates are used to correct the mean pressure derivative and update mean pressure. 

These quantities are calculated by 

p+ 1/2 = (y-l) L (Qokn+ 1/2pZn+ 1/2 + lCAhTn+ 1/2), 
vol (0) .. 

l.J 
-n + 1 -n A..!.n + 1/2 P = p +utp , 

-n -n+ 1 pn+ 1/2 = P + P 
2 

(3.153) 

Since p was not centered properly in time in when the discretization of the eneIgy equation 

(3.135) was solved, the temperature is corrected using the new estimate of pn + 1/2 by 
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(3.154) 

Given the corrected temperature, Tn + 1/2 is obtained by averaging Tn + 1 and Tn as in equation 

(3.151). 

The density can now be found at any point in time by applying the equation of state using the 

appropriately centered values of the pressure and the temperature. That is, 

pn+ 1/2 = (pn+ 1/21 (RTn + 1/2». 

pn+1 = (pn+l / (RTn + 1». 
Volume source tenns can be evaluated at tD + 1 by the expression 

3.7.3 Velocity and Pressure Update 

(3.155) 

(3.156) 

The corrected scalars are used in the predictor<onector method used to update the velocity 

and the pressure gradient After the Godunov procedure is performed and the advective tenns are 

found, U· is computed, where U· is an intermediate velocity field which does not satisfy the diver­

gence constraint accurately enough in time. U· is obtained by solving a second- order accurate 

Crank-Nicolson discretization for the momentum equation, equadon (3.136), where both the 

advective tenns and the pressure gradient are treated as sources. Note that the lagged pressure gra­

dient is used in this expression. This lagged teJTD is the reason that U· only satisfies the divergence 

constraint to first-order accuracy in time. To achieve second-order accuracy, an expression for 

Un + 1 is required with the pressure gradient properly centered in time, as in the expression 

un + 1 = UD + At[- [ (u . V) Ul n + 1/2_ 1 Gltn+ 1/2+ Il Ah (u* + un>]. (3.157) 
pD+ 1/2 pn+ 1/2 2 

This centering for the pressure gradient can be obtained by solving a pressure Poisson equation for 

the updated pressure, 

Lhltn + 1/2 = D (u* - Un + 1 Gltn -1/2) _ (Sn + 1 - Sn > . 
p 0 At pn + 1/2 .A t 

(3.158) 

Given a solution to equation (3.158), it is possible to calculate the velocity update by evaluating 

the expression 
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(3.159) 

Equation (3.158) is a consistent discretization of equation (2.86). Equa[ion (2.86) requires the 

solution of the following Poisson equation: 

1 a ~ V· - Vx = V· (~V",)-(u· V) u + -6u). 
P ~ P 

(3.160) 

If the advective and viscous terms in the right hand side of equation (3.160) are replaced by the 

definition of U· and V . ( %r(V'V» is replaced by :~ • then discretely this equation reduces to 

equation (3.158). 

Alternately. a pressure Poisson equation can be solved for the increment in the pressure, 

~ = 1tn + 1/2 _ 7tn - 1/2. This alternate Poisson equation is given by 

(3.161) 

Given a solution to equation (3.161), it is possible to solve for the velocity update by subtracting 

the gradient of the pressure increment from {f't 

Un + 1 = u· 1 G ~ 
pn+ 1/2 00

• 
(3.162) 

Equation (3.161) is a consistent discretization of equation (2.86). Equation (2.86) requires the 

solution to the Poisson equation 

1 d ~ t G V . - V 5 = V . (-t(V'V)- (u . V) u + -6u - - V1t ). 
p at p p 

(3.163) 

If the advective and viscous terms in the right hand side of equation (3.163) are replaced by the 

definition of U· and the guess for the pressure, :nO t is taken to be the pressure at the old time step, 

discretely this equation reduces to equation (3.161). 

In equations (3.161) and (3.163). L~ is the difference approximation defined in equation 

(3.14) with coefficients p = pn + 1/2 given by equation (3.1SS). BOWldary conditions for each 

operator are treated as in the non-reacting case. 

Given Sn + 1 , the volume source tenns at time tn + 1 , the potential for the gradient component 

of the velocity. Gown + 1 t can be computed by solving 
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(3.164) 

The divergence-free component of the velocity is then obtained by subtracting the gradient compo­

nent from Un + 1 ; i.e .. Un + 1 - GO ",n + 1 is approximately divergence-free. 

Finally. the divergence-free component of Un + 1 is filtered and added to the gradient compo­

nent to detennine the velocity update. That is. 

un+ 1 := (.~T(Un+ I_GoWn+ 1) + GoWn + 1) (3.165) 

where ,-denotes the filter given by equations (3.65) - (3.66) and Un + 1 satisfied equation (3.157). 

3.8 Computational Effort 

Finally, we address the question of computational effon and show which portions of the algo­

rithm are likely to be the most expensive. The velocity predictor is explicit and. therefore, inexpen­

sive. The pressure correction step requires the solution of Poisson equation (3.l37). This linear 

system is solved using a multigrid method. The scalar predictor is entirely explicit. The scalar 

update section requires the solution of two second-order accurate parabolic equations, (3.134) and 

(3.135). Again. these linear systems are solved 'using a multi grid method. The velocity and pres­

sure update is the most expensive section of the code. It involves solving the two parabolic prob­

lems in equation (3.136), one to find each component of the intennediate velocity field, t.r. In 

addition, the Poisson equation (3.161) must be solved to find the incremental pressure gradient. 

and the Poisson equation (3.164) must be solved to find the velocity potential due to combustive 

heat release. Still, these systems are all linear, and again a multigrid method is used to expedite the 

linear algebra. 

All together, four parabolic equations and three elliptic equations are solved per time step. The 

details of what percentage of CPU time gets devoted to solving each of the major elements are dis­

cussed in Chapter 4. 
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4.1 Rayleigh Taylor Instability 

Chapter 4 
Results 

In this chapter. the results of our calculations are presented and nwnerical convergence is dem­

onstrated for the method discussed in Chapter 3. The first calculation shows the development of a 

Rayleigh-Taylor instability which occurs when a heavy fluid accelerates into a lighter fluid due to 

the force of gravity. Initially. the density interface between the two fluids is perturbed by 

. 2xx 
11 (x) = O.OSLcos (L) (4.1) 

where L is the width of the computational domain. The interface has been smoothed by a tanh 

function. 1be initial density ratio is 7: 1, and the fluids are assumed to be inviscid. A uniform 32 x 

128 grid was used to perform this calculation. 

At early times, we see the interface begin to roll-up into two counter-fOtating vortices. As time 

progresses. the vortical structure becomes quite convoluted. The significance of these results is 

their favorable comparison to those in Bell and Marcus [9]. This, along with the results of the 

nwnerical convergence study. is an indication that the formulation using the approximate projec­

tion indeed captureS the physics of the problem. 

4.2 Numerical Convergence 

Convergence is established by solving the same problem with smooth initial data on coarse 

and tine grids. outputting the results at a fixed time, and comparing the difference on adjacent 

grids. The initial stream function is given by 

'PO = 1t-1sin2 (xy) sin 2 (xx) 

while the initial temperature and mass fraction are expressed by 

TO = 1 
1 - tanh (y - 0.5) 

and 

ZO = I 05 
1- tanh (y -0.5) - .. 
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The results of the convergence study for the non-reacting cases are summarized in tables 1. 2. 

and 3. We tested the following cases: 

Case I: Pr = 0. Sc = 0, Le = 0, Euler 

Case II: Pr = 0, Sc = DO (Le .• no species diffusivity), Le = 0, Re = 100 

Case Ill: Pr = 1, Sc = t, Le = 0, Re = 100 

Where Pr, Sc. Le and Re are the Prandd, Schmidt, Lewis and Reynolds numbers, respectively, 
cp)J. v 1C P UL 

defined Pr = -, Sc = tn' Le = ---;nt and Re = --a 
1C ~ pcp~ )J. 

Table 4 .. 1 Velocity Convergence Results • Non-reacting Flow 

Norm Case 32-64 Rate 64-128 Rate 128-256 

Ll I 3.801e-3 2.12 8.S16e-4 2.07 2.00Se-4 

II 2.1S4e-3 1.97 S.547e-4 1.97 1.424e-4 

In 2.1S3e-3 1.97 S.S4Se-4 1.97 1.423e-4 

L2 I 3.47ge-3 2.10 7.898e-4 2.06 1.863e-4 

n 1.898e-3 2.00 4.741e-4 1.98 1.208e-4 

In 1.897e-3 2.00 4.74Oe-4 1.98 1.20ge-4 

Table 4.2 Temperature Convergence Results • Non-reacting Flow 

Norm Case 32-64 Rate 64-128 Rate 128-256 

Ll I 1.046e-4 2.15 2.822e-S 2.12 S.10ge-6 

II 9.S48e-S 2.03 2.324e-S 2.03 5.667e-6 

III 4.494e-S 2.06 1.OS7e-5 2.03 2.S64e-6 

L2 I 1.496e-4 2.15 3.234e-S 2.12 7.2S1e-6 

II 1.23ge-4 2.01 3.0Sge-5 2.00 7.60Se-6 

III S.838e-S 2.07 1. 36ge-S 2.03 3.32ge-6 
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Table 4.3 Mass Fraction Convergence Results - Non-reacting Flow 

Nonn Case 32--64 Rate 64-128 Rate 128 .. 256 

Ll I 1.046e-4 2.14 2.282e-S 2.12 S.10ge-6 

II 9.S47e .. S 2.03 2.34e~S 2.03 S.668e-6 

III 4.493e·5 2.06 1.0S7e .. S 2.03 2.S6Se-6 

L2 I 1.496e-4 2.16 3.234e-S 2.12 7.251e-6 

II 1.23ge-4 2.01 3.0Sge-S 2.00 7.604e-6 

III S.84Oe-S 2.07 1.36ge-S 2.03 3. 332e-6 

A combusting case was used as well in the convergence study. For this case, the initial stream 

function is the same as in equation (4.2). The initial temperature and mass fraction profiles are the 

same as for the cases pictured in Figure 4.6 through Figure 4.8 which coruiist of two ·'hot spotstt t 

one at (0.25. 0.25) and another at (0.75. 0.75) defined by 

TO = _1_ tanh « (r-O.I2S) 32) + 1) <_1 ___ 1_> 
1000 + 2 + 300 1000 (4.5) 

and 

o tanh « (r-O.t25) 32) + 1) 
Z = 2 . (4.6) 

The results of this test case for which Sc = 1, Pr = 1 t and Le = 1, and Re = 100 is presented in Thble 

4.4 - Table 4.6 

Table 4.4 Velocity Convergence Results - Reacting Case 

Norm 32-64 Rate 64-128 Rate 128-256 

Lt 9.937e-2 2.08 2.310e-3 2.05 5.S14e-4 

L2 1.041e-2 2.09 2.39Oe-3 2.05 S.708e-4 

Table 4.5 Temperature Convergence Results .. Reacting Case 

Norm 32-64 Rate 64-128 Rate 128-256 

Ll 2.650e-J 2.00 6.S96e-4 2.03 1.59Se-4 

L2 S.641e-3 2.10 1.27ge-3 2.07 2.976e-4 
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Table 4 .. 6 Mass Fraction Convergence Results • Reacting Case 

Norm 32-64 Ra~e 64-128 Rate 12.8-256 

Ll 1.802e-3 2.05 4.318e-4 1.88 1.202e-4 

L2 4.093e-e 2.03 9.991e-4 1.87 2.80ge-4 

4.3 Combustion in a Closed Container 

The next calculation shown is that of combustion in a closed container. Initially, a smooth ini· 

tial velocity profile is defined inside a unit square with homogeneous Dirichlet boundary condi­

tions. The initial temperature profile consists of two smooth "hot spots" in the lower left and upper 

right comers, colTeSponding to areas where the fluid contains only products of combustion. TIle 

remainder of the ftuid consists of low temperature reactants. TIle Reynolds number is approxi­

mately SOOO, and the Prandtl, Lewis and Schmidt numbers are all of order unity. A 128 x 128 uni­

fonn grid was used to perfonn this calculation. 

We note especially the complex vortical structure that forms in the burnt gas due to the bam­

clinic generation of vorticity at the flame front and the enhanced mixing of the lower density gases. 

nus vorticity is generated due to the application of the same foree is applied both in front and in 

back of the flame. In the rear of the flame front. the temperature of the gas is higher and. therefore, 

the density is lower. The lower density gas is accelerated more rapidly than the high density gas, 

creating a velocity gradient. The strongest baroclinic vorticity generation is thus displayed at eady 

times since the effect is strongest when the density ratio is highest. As the flame front moves out­

wards, this vonicity is left behind and serves to enhance the mixing in the center of the container. 

In addition, the low Mach number effects are apparent in the temperature profiles. Note that 

the high temperature zone is located not at the flame front where the energy is released, but rather 

in the center of the domain. This effect is due to the uniform rise in bulk tbennodynamic pressure; 

as the pressure rises. the temperature rises highest in the center where combustion is completed 

and the density is lowest. This behavior of the temperature field can be predicted by examining the 

conservation of energy equation which shows that dT - .!dp. 1be faclOr of p on the right hand p 
side has the effect of increasing temperatures in the post-combustion, low .. density regions. 

In this calculation it was assumed that the reactants are perfectly mixed before chemical reac .. 
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tion and the flame is laminar. According to laminar Hame theory, the flame zone is divided into two 

sections: zone 1, the preheat zone, where the gases are heated by conduction and diJIusion until 

they reach ignition temperature; and zone 2, the reaction zone (see [45] for more information.) A 

diagram of a one-dimensional laminar flame is shown in Figure 4.1. 

T 2ime 1 Zone 2 
(Preheat Zone 

x 
Figure 4.1 Diagram of temperature variations and reaction zones for a laminar flame 

A scaling aJgUIIlent can be used to show that the flame front is being resolved in space and 

time if the flame is described by this theory. An energy balance in zone 1 shows that 

(4.7) 

where To is the temperature in the unburned region, Ti is the temperature at the border between 

zone 1 and zone 2. Tf is the temperature of the combustion products, and OR is the length of the 

reaction zone. 'The mass ftow rate, ni t is defined as 

(4.8) 

where p is the density of the unburned gas and SL is the laminar flame speed. By combining equa­

tions (4.7) and (4.8), a definition for tile ftarne speed can be found given by 

1C (Tf-To> 1 
SL = -r-

PCp (Tj - To) OR 

If 'tR• the reaction time. is the reciprocal of the reaction rate, k, then 

SL 
°Rock 

and 
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1C (Tf-TO) 1 
OR DC - - (4.11) 

pCp (Ti -To) k . 

An ignition temperature reaction rate model is used where k - 1 s - t . It is assumed that 

Tf == 1000 K, To:::: 300 K. Ti == 600 K. 1C = 1.4xlO-S caI/(s em K), p:;;: 3xlO-6 g/cm3 and 

cp == 1.0 call(s g K) . By substituting these parameters into equation (4.11) we can see that our 

flame front should be spread over approximately four cells. 

Another way convergence is demonstrated is by showing that the rise in bulk thennodynamic 

pressure and the rate of fuel consumption both approach a limit Tbennodynamic pressure vs. time 

and the Lz nann of the mass fraction field vs. X are plotted in Figure 4.2 and Figure 4.3 for three 

uniform meshes: 64 x 64, 128 x 128, and 256 x 256 

4.4 CPU Time and Memory Requirements 

Perfonnance tests were run on a Cray Y-MP C90 to asses the algorithm's efficiency. TIle 

results are summarized in Table 4.7 for the case of combustion in a closed container on a unifonn 

grid. 1\vo cases were tested, one on a 128 x 128 unifonn mesh and another on a 256 x 256 unifonn 

mesh. The first two columns in the table show the percentage of CPU time spent solving elliptic 

problems and the percentage spent solving parabolic problems. Column 3 shows the average num­

ber of Mflops (millions of floating point operations per second), an indication of whether the code 

is properly vectorized. Column 4 shows the maximum amount of memory the program required in 

units of Mw (mega words). and column 5 indicates the rate of throughput by showing, on average. 

how many CPU seconds are required to complete one time step. 

Table 4 .. ' CPU and Memory Usage 

N Elliptic % Parabolic~ Mflops Memory CPUsecsl 
(Mw) time step 

128 62.2 8.4 381.4 1.62 .358 

256 62.6 9.1 484.9 5.85 1.1 

The table clearly shows that the vast majority of CPU cycles are spent in Multigrid solving 

elliptic problems. However, the table also indicates that the program is dominated by vector opera­

tions and that good execution speeds are being obtained. For the 128 x 128 case, of the 381.4 
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Figure 4.2 Bulk thermodynamic pressure vs. time for three unifonn grids 
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Figure 4.3 The 1...:2 nonn of the mass fraction vs. time for three unifonn grids 

Mftops overall, 380.1 were performed in the vector units. For the 256 x 256 case, 484.0 of the 

484.9 Mftops were perfonned in the vector units. To lend some perspective to these figures, a rate 

of over 200 Mflops is considered to be adequate. and a rate of over 400 Mflops is considered to be 

very good. The memory requirements at first glance may seem high. However. the figure is inflated 

due to the fact all memory required by multigrid is allocated once at the beginning of the program. 

If lower memory overbead is desired, memory could easily be allocated and deallocated in the 
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multigrid routines themselves. 

4.5 Future Work 

This algorithm was developed as part of a long-tenn plan to create an engineering tool which 

could be used to design components that involve low Mach number reacting and non-reacting fluid 

flow. Of course, major modifications must be made to achieve this goal; in particular, many of the 

simplifying assumptions made previously must be relaxed, changes must be made to improve the 

physical model, and new additions must be put into place to handle more complex spatial domains. 

Some specific suggestions for future modifications are: 

1. Improved Gridding Methods 

Adaptive Mesh Refinement (AMR) as presented in Belger and Oliger [11] and Berger and 

Colella [12] is one way that gridding could be improved. AMR is a means of locally refining a uni­

fonn mesh so that the computational power is only put into regions which high gradients. 1b 

implement AMR., a refinement criteria is determined. the domain is gridded accordingly, and then 

the algorithm is applied to both coarse and fine grids. Regridding is perfonned every few steps. By 

following such an approach, the CPU time required to perform these computations can be reduced 

significantly, as shown by Almgren, et. aI. [2] who used AMR in perfonning a calculation to solve 

the incompressible Euler equations. 

In addition to adding AMR, an improved boundary treatment should be used. 1\vo approaches 

for handling complicated domain geometries are the Cartesian mesh method as presented by Chern 

and Colella [16] and Young, et. aI. [68], and the composite mesh method described in Chesshire 

and Henshaw [17] and Benek. el aI. [10]. To implement a Canesian mesh strategy, a unifoMl grid 

is placed over the entire domain, and bodies and domain boundaries are allowed to intersect cells. 

Intersected cells are treated as though they contain a tracked front. The advantage to the Canesian 

mesh method is it's simplicity; it is easily implemented for any domain or for How over any body. 

The disadvantage to this method is that some accuracy is lost at the boundary. Whether a Canesian 

mesh approach is appropriate or not is problem-dependent; if the flow is primarily driven by 

boundary layer interactions, the loss of accuracy at the boundary makes this method a poor choice. 

However. for flows where boundary flow may not be of primary imponance. a Cartesian mesh 
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approach is a viable option. A Canesian mesh approach has already been used by Pember. et. aI. 

[52] for inviscid compressible flow, and methods for automatic grid generation are being currently 

investigated by Melton. et. aI. [49]. 

A composite mesh approach is implemented by creating multiple meshes and interpolating 

between them. For example. a unifonn mesh may be laid over the majority of the domain, except 

over bodies in the flow and at boundaries where a body-fitted grid would be used. The body-fitted 

grid would cover the boundary layer and extend partially into the free stream. Boundary data 

would be interpolated onto the body-fitted grid from the unifonn background mesh. The advantage 

of such an approach is its preservation of accuracy at the boundary. The disadvantage is that such 

an algorithm is correspondingly more complicated. 

2. Improved Physical Models 

One way to improve the physical model would be to replace the ignition temperature kinetics 

model by a more complex model. This addition could be useful for predicting pollutant generation 

in burners or internal combustion engines where mechanisms must be included in the kinetics 

model to account for the fonnation of intennediate species. Another way to improve the physical 

model would be to add a radiation model. A third improvement would be to relax the assumption 

that fluid properties such as viscosity, diffusivity, !hennal conductivity, etc., are constant. To per­

fonn a more realistic computation, clearly these properties must be allowed to vary with the ther­

modynamic variables. Finally. other reduced models for combustion can be implemented, such as 

algorithms for tracking thin flame fronts, and the conserved scalar model for calculating non-pre· 

mixed combustion flames in Bilger [13]. Thin flame models have been used in the past by Gho­

niem. Chorin and Oppenheim [30J, Zhu and Sethian [69], and Hilditch [40]. 
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Figure 4.4 Early evolution of the ~ayleigh-Taylor instability showing the for-

mation of two counter-rotating vortices into a mushroom shape 
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Figure 4.5 Late time evolu_tion of the Rayleigh-Taylor instability 
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Figure 4.6 Flame front location for the case of combustion in a closed container 
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Figure 4.7 Vorticity contours for combustion in a closed container 
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Figure 4.8 Temperature contours for combustion in a closed container 
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Figure 4.9 The scalar field of the velocity potential for combustion in a closed container 
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Appendix 

A.l The Multigrid Method 

The multigrid method is a technique for reducing the computational time required to solve lin­

ear systems, and it can be used in the numerical scheme described in this thesis to considerably 

lower the run·time and expense. See Briggs [3a] for an introduction to multigrid. 

Multigrid is used for solving problems of the form Lu = f on a domain n where L is a linear 

operator, given some boundary conditions for u. Let v denote the numerical solution to the prob­

lem. It is possible to find the solution iteratively using 

(A.I) 

where I is an iteration index, L h is the discrete version of our linear operator, and A. is a relaxation 

parameter. After a sufficient number of iterations. v will be close to u. When equation (A. 1 ) is 

applied to v. we are said to "be relaxing on" v. 

The choice for A. can significantly affect the speed of the calculation; A. is often defined in a 

way that cancels all terms of vt j from the right hand side of equation (A.l). For example. for a 

standard five-point Laplacian where Ax = Ay = h. A. would be set to h2/ 4 so that 

(A.2) 

Let vI = U + 01 where 0 is the error between the exact and computed solution. Also let 

R = L hv I - f where R stands for residual. Given these definitions. the problem for v can be 

equivalently rewritten as a problem for 0 

Therefore, as vI ~ u t 01 -+ 0 . 

L hvl = L hu + L h 81, 

L hOI = Lhv1_ f = R. 
(A.3) 

Gauss-Seidel and Jacobi are two common choices for relaxation schemes. They are virtually 

identical methods; in Gauss-Seidel, vi + 1 depends on vi and values of vI + 1 that have already 

been found, while in Jacobi relaxation v1+ 1 depends on vi only. These schemes can be used with 
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red-black ordering, a tenn which refers to the order in which one solves for vI + 1 . To implement 

red-black ordering, first solve on the "red" cells (referring to a checkerroard pattern). then finish 

the iteration by solving on the "blacks:' 

Relaxation alone, however. is too slow for our purposes. While high frequencies in the solu­

tion are damped efficiently, low frequencies will persist Multigrid solves this problem by perform­

ing the same relaxation on both coarse and fine grids. the rationale being that a low frequency 

mode on a fine grid will appear as a bigh frequency mode on a coarse grid. By systematically 

relaxing on these difference grids and interpolating the solution on adjacent levels, a solution can 

be found in a much shorter time. 

Multigrid has been implemented using a V-cycle. where "V" describes the succession of grids 

relaxed upon. A sample V-cycle for a grid with 16 cells per side is shown in Figure A.I. 

h 

2h 

4h 

8h 

16h 

Figure A.l One Multigrid V-cycle 

Here are the steps in detail that make up a single V-cycle for a grid with the coarsest spacing 

given by Nh. Begin on the finest mesh given v, f t and h and proceed as follows: 

Relax on L huh = ch 
Coarsen f2h = I~hRh 

Relax on L 2hu2h = f2h 

Compute f'h = I~~R2h 
Relax on L 4hu4h = r h 

Compute ~h = I:~R4h 
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Correct U4h := (U
4h + I!~u4h) 

Relax on L 4hu4h = ~h 

Correct u2h := (u2h + I~~u2h) 

Relax on L 2hu2h = f2h 

Correct uh := (uh + I~huh) 

Relax on L hUh = fh 

To coarsen. an interpolating function is used. This function is given by 

(A.4) 

where an f superscript denotes fine mesh values and a c superscript denotes coarse mesh values. 

Since values of the density appear in the operator, these too need to be averaged. In the MAC pro­

jection. where values of density are required on the mesh, averaging is done by 

2 
Pc - --~----~----i-I /2, j - f f ' 

1/P2i - 3/2, 2j + 1 1P2i - 3/2, 2j-l 

2 
Pc - ---=---------=-----ij-l/2- f f . 

· 1/ P2i. 2j-3/2 + 1/ P2i - 1. 2j-3/2 

(A.S) 

In the parabolic equations where values of density are required at cell centers, averaging is done by 

(A.6) 

The correction step where the coarse correction is interpolated onto the fine mesh is given by 

f f ~c 
v 2i. 2j = v 2i, 2j - ui, j' 

f f OC 
v 2i t 2j -- 1 = V 2it 2j - 1 - i, j' 

f f ~c 
v 2

4 1 2' = v2' 1 2' -v' ., 1- • J 1- • J l.J 

(A.7) 

f _ f ~c 
v2' 1 24 1 - v2' 1 2' 1 - u. " 1- • J- 1- • J- l.J 
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